IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/264.html
   My bibliography  Save this paper

On the rule of K names

Author

Listed:
  • Salvador Barberà
  • Danilo Coelho

Abstract

The rule of k names can be described as follows: given a set of candidates for office, a committee chooses k members from this set by voting, and makes a list with their names. Then a single individual from outside the committee selects one of the listed names for the office. Different variants of this method have been used since the distant past and are still used today in many countries and for different types of choices. After documenting this widespread use by means of actual examples, we provide a theoretical analysis. We concentrate on the plausible outcomes induced by the rule of k names when the agents involved act strategically. Our analysis shows how the parameter k, the screening rule and the nature of candidacies act as a means to balance the power of the committee with that of the chooser.

Suggested Citation

  • Salvador Barberà & Danilo Coelho, 2004. "On the rule of K names," Working Papers 264, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:264
    as

    Download full text from publisher

    File URL: http://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/264.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peleg,Bezalel, 2008. "Game Theoretic Analysis of Voting in Committees," Cambridge Books, Cambridge University Press, number 9780521074650, Enero-Abr.
    2. Steven J. Brams & Samuel Merrill, III, 1986. "Binding Versus Final-Offer Arbitration: A Combination is Best," Management Science, INFORMS, vol. 32(10), pages 1346-1355, October.
    3. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    4. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    5. Murat R. Sertel & M. Remzi Sanver, 2004. "Strong equilibrium outcomes of voting games ¶are the generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 22(2), pages 331-347, April.
    6. Gehrlein, William V., 1985. "The Condorcet criterion and committee selection," Mathematical Social Sciences, Elsevier, vol. 10(3), pages 199-209, December.
    7. Barış Kaymak & M. Remzi Sanver, 2003. "Sets of alternatives as Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(3), pages 477-494, June.
    8. Steven J. Brams & Samuel Merrill, III, 1983. "Equilibrium Strategies for Final-Offer Arbitration: There is no Median Convergence," Management Science, INFORMS, vol. 29(8), pages 927-941, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barberà, Salvador & Coelho, Danilo, 2010. "On the rule of k names," Games and Economic Behavior, Elsevier, vol. 70(1), pages 44-61, September.
    2. Barberà, Salvador & Coelho, Danilo, 2017. "Balancing the power to appoint officers," Games and Economic Behavior, Elsevier, vol. 101(C), pages 189-203.
    3. Salvador Barberà & Danilo Coelho, 2006. "How to choose a non-controversial list with k names," Working Papers 291, Barcelona School of Economics.
    4. Salvador Barberà & Danilo Coelho, 2008. "How to choose a non-controversial list with k names," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(1), pages 79-96, June.
    5. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2012. "Group strategy-proof social choice functions with binary ranges and arbitrary domains: characterization results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 791-808, November.
    6. Salvador Barberà, 2010. "Strategy-proof social choice," UFAE and IAE Working Papers 828.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Bora Erdamar & M. Sanver, 2009. "Choosers as extension axioms," Theory and Decision, Springer, vol. 67(4), pages 375-384, October.
    8. Berga, Dolors & Serizawa, Shigehiro, 2000. "Maximal Domain for Strategy-Proof Rules with One Public Good," Journal of Economic Theory, Elsevier, vol. 90(1), pages 39-61, January.
    9. Podinovski, Vladislav V., 2010. "Set choice problems with incomplete information about the preferences of the decision maker," European Journal of Operational Research, Elsevier, vol. 207(1), pages 371-379, November.
    10. Mihir Bhattacharya, 2019. "Constitutionally consistent voting rules over single-peaked domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 225-246, February.
    11. Dinko Dimitrov & Ruud Hendrickx & Peter Borm, 2004. "Good and bad objects: the symmetric difference rule," Economics Bulletin, AccessEcon, vol. 4(11), pages 1-7.
    12. Bock, Hans-Hermann & Day, William H. E. & McMorris, F. R., 1998. "Consensus rules for committee elections," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 219-232, May.
    13. Fatma Aslan & Hayrullah Dindar & Jean Lainé, 2022. "When are committees of Condorcet winners Condorcet winning committees?," Review of Economic Design, Springer;Society for Economic Design, vol. 26(3), pages 417-446, September.
    14. Bonifacio, Agustín G. & Massó, Jordi & Neme, Pablo, 2023. "Preference restrictions for simple and strategy-proof rules: Local and weakly single-peaked domains," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    15. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    16. Samet, Dov & Schmeidler, David, 2003. "Between liberalism and democracy," Journal of Economic Theory, Elsevier, vol. 110(2), pages 213-233, June.
    17. Paolo Giovanni Piacquadio, 2017. "A Fairness Justification of Utilitarianism," Econometrica, Econometric Society, vol. 85, pages 1261-1276, July.
    18. Picot, Jérémy & Sen, Arunava, 2012. "An extreme point characterization of random strategy-proof social choice functions: The two alternative case," Economics Letters, Elsevier, vol. 115(1), pages 49-52.
    19. Lefgren, Lars J. & Stoddard, Olga B. & Stovall, John E., 2021. "Rationalizing self-defeating behaviors: Theory and evidence," Journal of Health Economics, Elsevier, vol. 76(C).
    20. Kentaro Hatsumi & Dolors Berga & Shigehiro Serizawa, 2014. "A maximal domain for strategy-proof and no-vetoer rules in the multi-object choice model," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 153-168, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.