IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/761.html
   My bibliography  Save this paper

Forecasting Latin-American yield curves: An artificial neural network approach

Author

Listed:
  • Daniel Vela

Abstract

This document explores the predictive power of the yield curves in Latin America (Colombia, Mexico, Peru and Chile) taking into account the factors set by the specifications of Nelson & Siegel and Svensson. Several forecasting methodologies are contrasted: an autoregressive model, a vector autoregressive model, artificial neural networks on each individual factor, and artificial neural networks on all factors that explain the yield curve. The out-of-sample performance of the fitting models improves with the neural networks in the one-month-ahead forecast along all studied yield curves. Moreover, the three factor model developed by Nelson & Siegel proves to be the best choice for out-of-sample forecasting. Finally, the success of the cross variable interaction strongly depends on the selected yield curve.

Suggested Citation

  • Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 761, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:761
    DOI: 10.32468/be.761
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.761
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    2. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    3. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, vol. 146(2), pages 351-363, October.
    4. de Menezes, Lilian M. & Nikolaev, Nikolay Y., 2006. "Forecasting with genetically programmed polynomial neural networks," International Journal of Forecasting, Elsevier, vol. 22(2), pages 249-265.
    5. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Rafael B. Rezende & Mauro S. Ferreira, 2013. "Modeling and Forecasting the Yield Curve by an Extended Nelson‐Siegel Class of Models: A Quantile Autoregression Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(2), pages 111-123, March.
    9. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    10. Bodyanskiy, Yevgeniy & Popov, Sergiy, 2006. "Neural network approach to forecasting of quasiperiodic financial time series," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1357-1366, December.
    11. David Bolder, 2006. "Modelling Term-Structure Dynamics for Risk Management: A Practitioner's Perspective," Staff Working Papers 06-48, Bank of Canada.
    12. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    13. David Bolder & Scott Gusba, 2002. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada," Staff Working Papers 02-29, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Yasir & Sitara Afzal & Khalid Latif & Ghulam Mujtaba Chaudhary & Nazish Yameen Malik & Farhan Shahzad & Oh-young Song, 2020. "An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    2. Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
    3. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2021. "Deep Calibration of Interest Rates Model," Papers 2110.15133, arXiv.org, revised Sep 2024.
    4. Oleksandr Castello & Marina Resta, 2022. "Modeling the Yield Curve of BRICS Countries: Parametric vs. Machine Learning Techniques," Risks, MDPI, vol. 10(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 10502, Banco de la Republica.
    2. Lorenčič Eva, 2016. "Testing the Performance of Cubic Splines and Nelson-Siegel Model for Estimating the Zero-coupon Yield Curve," Naše gospodarstvo/Our economy, Sciendo, vol. 62(2), pages 42-50, June.
    3. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    4. Rafael Barros de Rezende, 2011. "Giving Flexibility to the Nelson-Siegel Class of Term Structure Models," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 27-49.
    5. Luciano Vereda & Hélio Lopes & Jessica Kubrusly & Adrian Pizzinga & Taofik Mohammed Ibrahim, 2014. "Yield Curve Forecasts and the Predictive Power of Macro Variables in a VAR Framework," Journal of Reviews on Global Economics, Lifescience Global, vol. 3, pages 377-393.
    6. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    7. Wali Ullah & Yasumasa Matsuda & Yoshihiko Tsukuda, 2015. "Generalized Nelson-Siegel term structure model: do the second slope and curvature factors improve the in-sample fit and out-of-sample forecasts?," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 876-904, April.
    8. Takamizawa, Hideyuki & 高見澤, 秀幸, 2015. "Impact of No-arbitrage on Interest Rate Dynamics," Working Paper Series G-1-5, Hitotsubashi University Center for Financial Research.
    9. Bredin, Don & O'Sullivan, Conall & Spencer, Simon, 2021. "Forecasting WTI crude oil futures returns: Does the term structure help?," Energy Economics, Elsevier, vol. 100(C).
    10. Wali ULLAH & Khadija Malik BARI, 2018. "The Term Structure of Government Bond Yields in an Emerging Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 5-28, September.
    11. Frank J. Fabozzi & Francesco A. Fabozzi & Diana Tunaru, 2023. "A comparison of multi-factor term structure models for interbank rates," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 323-356, July.
    12. Wali Ullah & Yasumasa Matsuda, 2014. "Generalized Nelson-Siegel Term Structure Model : Do the second slope and curvature factors improve the in-sample fit and out-of-sample forecast?," TERG Discussion Papers 312, Graduate School of Economics and Management, Tohoku University.
    13. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    14. Hokuto Ishii, 2018. "Modeling and Predictability of Exchange Rate Changes by the Extended Relative Nelson–Siegel Class of Models," IJFS, MDPI, vol. 6(3), pages 1-15, August.
    15. Takamizawa, Hideyuki, 2022. "How arbitrage-free is the Nelson–Siegel model under stochastic volatility?," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 205-223.
    16. repec:jss:jstsof:36:i01 is not listed on IDEAS
    17. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2016. "What derives the bond portfolio value-at-risk: Information roles of macroeconomic and financial stress factors," SFB 649 Discussion Papers 2016-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. repec:hum:wpaper:sfb649dp2016-006 is not listed on IDEAS
    19. Hiroyuki Kawakatsu, 2020. "Recovering Yield Curves from Dynamic Term Structure Models with Time-Varying Factors," Stats, MDPI, vol. 3(3), pages 1-46, August.
    20. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    21. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    22. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.

    More about this item

    Keywords

    Term structure of interest rates; Nelson & Siegel; Svensson; out-of-sample forecast; Artificial Neural Networks.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.