IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/1063.html
   My bibliography  Save this paper

Understanding the Consumer Confidence Index in Colombia: A structural FAVAR analysis

Author

Listed:
  • Camilo Alberto Cárdenas-Hurtado

    (Banco de la República de Colombia)

  • María Alejandra Hernández-Montes

    (Banco de la República de Colombia)

Abstract

The consumer confidence index (CCI) is very relevant for economic analysis due to its timely publication and forecasting capacities. Although there is extensive literature on the link between CCI and macroeconomic aggregates, in particular with households' consumption, few papers have studied the fundamental factors that explain the CCI behaviour. Actually, no attempt has been made for the Colombian case. In this paper we aim to fill this gap. We estimate a Structural Factor-Augmented VAR (SFAVAR) model and perform a historical decomposition (HD) on the CCI series to obtain the underlying structural innovations that drove the CCI dynamics over the past few years. Our findings suggest that the CCI responded to changes in the underlying determinants and to non-fundamental shocks possibly related to uncertainty periods and noneconomic, socio-political or electoral events. Moreover, a counterfactual analysis shows that households' consumption forecasts improve when using the CCI series that are not affected by these non-fundamental shocks. **** ABSTRACT: El Índice de Confianza del Consumidor (ICC) es un instrumento relevante para el análisis económico, dada su oportuna publicación y sus capacidades de pronóstico. A pesar de que existe una gran cantidad de trabajos que estudian la relación entre el ICC y los agregados macroeconómicos, y en particular con el consumo privado, son pocos los estudios que han analizado los factores fundamentales que definen el comportamiento del ICC. De hecho, no hay ningún estudio al respecto para el caso colombiano. Con este documento tratamos de resolver este problema. Estimamos un modelo VAR estructural de factores (SFAVAR) y realizamos una descomposición histórica de choques del ICC para obtener los errores estructurales que determinaron la dinámica del ICC en años recientes. Nuestros resultados sugieren que el comportamiento observado del ICC obedeció tanto a cambios en sus determinantes como a choques no fundamentales relacionados, posiblemente, con eventos coyunturales de naturaleza no-económica, socio-política y/o electoral. Adicionalmente, un ejercicio contrafactual permite ver que el pronóstico del consumo privado mejora cuando se utiliza una serie del ICC que no está afectada por los choques no explicados por sus fundamentales.

Suggested Citation

  • Camilo Alberto Cárdenas-Hurtado & María Alejandra Hernández-Montes, 2019. "Understanding the Consumer Confidence Index in Colombia: A structural FAVAR analysis," Borradores de Economia 1063, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:1063
    DOI: 10.32468/be.1063.pdf?sequence=11&isAllowed=y
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.1063
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.1063.pdf?sequence=11&isAllowed=y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Matsusaka, John G & Sbordone, Argia M, 1995. "Consumer Confidence and Economic Fluctuations," Economic Inquiry, Western Economic Association International, vol. 33(2), pages 296-318, April.
    3. C. Alan Garner, 2002. "Consumer confidence after September 11," Economic Review, Federal Reserve Bank of Kansas City, vol. 87(Q II).
    4. Leonardo Fabio Morales & Carlos Medina, 2017. "Assessing the Effect of Payroll Taxes on Formal Employment: The Case of the 2012 Tax Reform in Colombia," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Fall 2017), pages 75-124, November.
    5. Schmitt-Grohé, Stephanie & Uribe, Martín, 2015. "How Important Are Terms Of Trade Shocks?," CEPR Discussion Papers 10655, C.E.P.R. Discussion Papers.
    6. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, September.
    7. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    8. Carroll, Christopher D & Fuhrer, Jeffrey C & Wilcox, David W, 1994. "Does Consumer Sentiment Forecast Household Spending? If So, Why?," American Economic Review, American Economic Association, vol. 84(5), pages 1397-1408, December.
    9. Juan Manuel Julio & Anderson Grajales, 2011. "¿Qué nos dicen los índices de confianza?," Borradores de Economia 659, Banco de la Republica de Colombia.
    10. Jason Bram & Sydney Ludvigson, 1998. "Does consumer confidence forecast household expenditure? a sentiment index horse race," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Jun), pages 59-78.
    11. Belviso Francesco & Milani Fabio, 2006. "Structural Factor-Augmented VARs (SFAVARs) and the Effects of Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 6(3), pages 1-46, December.
    12. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    13. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    14. Aoki, Kosuke, 2003. "On the optimal monetary policy response to noisy indicators," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 501-523, April.
    15. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    16. Camilo Alberto Cárdenas-Hurtado & Aaron Levi Garavito-Acosta & Jorge Hernán Toro-Córdoba, 2018. "Asymmetric Effects of Terms of Trade Shocks on Tradable and Non-tradable Investment Rates: The Colombian Case," Borradores de Economia 1043, Banco de la Republica de Colombia.
    17. Orphanides, Athanasios, 2003. "Monetary policy evaluation with noisy information," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 605-631, April.
    18. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    19. Karel Jan Alsem & Steven Brakman & Lex Hoogduin & Gerard Kuper, 2008. "The impact of newspapers on consumer confidence: does spin bias exist?," Applied Economics, Taylor & Francis Journals, vol. 40(5), pages 531-539.
    20. Yasemin Özerkek & Sadullah Çelik, 2010. "The Link between Government Spending, Consumer Confidence and Consumption Expenditures in Emerging Market Countries," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 57(4), pages 471-485, December.
    21. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    22. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    23. Wilmar Alexander Cabrera Rodríguez & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Relación entre el riesgo sistémico del sistema financiero y el sector real: un enfoque FAVAR," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 32(75), pages 1-22, December.
    24. Ramalho, Esmeralda A. & Caleiro, António & Dionfsio, Andreia, 2011. "Explaining consumer confidence in Portugal," Journal of Economic Psychology, Elsevier, vol. 32(1), pages 25-32, February.
    25. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    26. Paradiso, Antonio & Kumar, Saten & Margani, Patrizia, 2014. "Are Italian consumer confidence adjustments asymmetric? A macroeconomic and psychological motives approach," Journal of Economic Psychology, Elsevier, vol. 43(C), pages 48-63.
    27. Alfonso, Viviana & Arango, Luis Eduardo & Arias, Fernando & Cangrejo, Guillermo & Pulido, José David, 2012. "Ciclos de negocios en Colombia, 1975-2011," Revista Lecturas de Economía, Universidad de Antioquia - CIE, issue 78, pages 115-149, May.
    28. Vuchelen, Jef, 2004. "Consumer sentiment and macroeconomic forecasts," Journal of Economic Psychology, Elsevier, vol. 25(4), pages 493-506, August.
    29. Wilmar Alexander Cabrera Rodríguez & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Relación entre el riesgo sistémico del sistema financiero y el sector real: un enfoque FAVAR," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 32(75), pages 1-22, December.
    30. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    31. Suzanna De Boef & Paul M. Kellstedt, 2004. "The Political (and Economic) Origins of Consumer Confidence," American Journal of Political Science, John Wiley & Sons, vol. 48(4), pages 633-649, October.
    32. Burbidge, John & Harrison, Alan, 1985. "An historical decomposition of the great depression to determine the role of money," Journal of Monetary Economics, Elsevier, vol. 16(1), pages 45-54, July.
    33. Vuchelen, Jef, 1995. "Political events and consumer confidence in Belgium," Journal of Economic Psychology, Elsevier, vol. 16(4), pages 563-579, December.
    34. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    35. E. Kilic & S. Cankaya, 2016. "Consumer confidence and economic activity: a factor augmented VAR approach," Applied Economics, Taylor & Francis Journals, vol. 48(32), pages 3062-3080, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    2. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    3. Petar Sorić & Mirjana Čižmešija & Marina Matošec, 2020. "EU Consumer Confidence and the New Modesty Hypothesis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 899-921, December.
    4. Fabio Clementi & Marco Gallegati & Mauro Gallegati, 2015. "Growth and Cycles of the Italian Economy Since 1861: The New Evidence," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(1), pages 25-59, March.
    5. Christian Aßmann & Jens Hogrefe & Roman Liesenfeld, 2009. "The decline in German output volatility: a Bayesian analysis," Empirical Economics, Springer, vol. 37(3), pages 653-679, December.
    6. Carsten J. Crede, 2015. "A structural break cartel screen for dating and detecting collusion," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2015-11, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    7. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    8. Liu, Guan-Chun & Lee, Chien-Chiang & Lee, Chi-Chuan, 2016. "The nexus between insurance activity and economic growth: A bootstrap rolling window approach," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 299-319.
    9. Frijns, Bart & Indriawan, Ivan & Otsubo, Yoichi & Tourani-Rad, Alireza, 2019. "The cost of trading during Federal Funds Rate announcements: Evidence from cross-listed stocks," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 176-187.
    10. Vicente Esteve, 2004. "Política fiscal y productividad del trabajo en la economía española: un análisis de series temporales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 3-29, June.
    11. Ramalho, Esmeralda A. & Caleiro, António & Dionfsio, Andreia, 2011. "Explaining consumer confidence in Portugal," Journal of Economic Psychology, Elsevier, vol. 32(1), pages 25-32, February.
    12. Paradiso, Antonio & Kumar, Saten & Margani, Patrizia, 2014. "Are Italian consumer confidence adjustments asymmetric? A macroeconomic and psychological motives approach," Journal of Economic Psychology, Elsevier, vol. 43(C), pages 48-63.
    13. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    14. Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
    15. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    16. Christian Kleiber & Achim Zeileis, 2005. "Validating multiple structural change models-a case study," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 685-690.
    17. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    18. Yazgan, M. Ege & Özkan, Harun, 2015. "Detecting structural changes using wavelets," Finance Research Letters, Elsevier, vol. 12(C), pages 23-37.
    19. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    20. Vicente Esteve & Francisco Requena, 2006. "A Cointegration Analysis of Car Advertising and Sales Data in the Presence of Structural Change," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 13(1), pages 111-128.

    More about this item

    Keywords

    Consumers' Confidence Index; Colombia; Structural; FAVAR; Historical Decomposition; Índice de Confianza del Consumidor; Colombia; Estructural; FAVAR; Descomposición Histórica;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • E71 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on the Macro Economy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1063. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.