IDEAS home Printed from
   My bibliography  Save this paper

Modelling Fertility: A Semi-Parametric Approach


  • Oberhofer, Walter
  • Reichsthaler, Thomas


This article presents a categorical model of fertility based on the statistical theory of the Generalised Linear Model (GLM). Focussing on the individual probability of giving birth to a child, we derive distributions which can be embedded in a GLM framework. A major advance of that methodology is the knowledge of the distribution of the random variable, which leads to a Maximum Likelihood estimation procedure. The approach takes into account the smooth shapes of parameter development over the age of the mother as well as over time. The estimation of this semi-parametric approach is done using the Local-Likelihood-method. The presented method provides stable results of the fertility, especially for smaller populations. This is illustrated by using a data set which consists of less than 100,000 inhabitants. Dieser Aufsatz stellt ein kategorielles Modell der Geburtenhäufigkeit auf Basis der statistischen Theorie des Verallgemeinerten Linearen Modells (VLM) vor. Ausgehend von individuellen Gebär-Wahrscheinlichkeiten leiten wir Verteilungen ab, welche in einen VLM-Rahmen eingebettet werden können. Ein besonderer Vorteil dieser Methode ist das Wissen um die Verteilung der Zufallsvariablen, welches ein Maximum-Likelihood Schätzverfahren ermöglicht. Der Ansatz berücksichtigt den gleichmäßigen Verlauf der Parameter-Entwicklung über das Alter der Mutter und über die Zeit. Die Schätzung dieses semi-parametrischen Ansatzes erfolgt mit Hilfe der Local-Likelihood-Methode. Die vorgestellte Methode liefert solide Ergebnisse zur Geburtenhäufigkeit, insbesondere bei kleineren Bevölkerungszahlen. Dies wird anhand eines Datensatzes mit weniger als 100.000 Einwohnern gezeigt.

Suggested Citation

  • Oberhofer, Walter & Reichsthaler, Thomas, 2004. "Modelling Fertility: A Semi-Parametric Approach," University of Regensburg Working Papers in Business, Economics and Management Information Systems 396, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:677

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Ahlburg, Dennis A. & Land, Kenneth C., 1992. "Population forecasting: Guest editors' introduction," International Journal of Forecasting, Elsevier, vol. 8(3), pages 289-299, November.
    2. Alho, Juha M., 1990. "Stochastic methods in population forecasting," International Journal of Forecasting, Elsevier, vol. 6(4), pages 521-530, December.
    3. George B. Roberts, Chairman, Universities-National Bureau Committee for Economic Research, 1960. "Demographic and Economic Change in Developed Countries," NBER Books, National Bureau of Economic Research, Inc, number univ60-2.
    4. Birdsall, Nancy, 1988. "Economic approaches to population growth," Handbook of Development Economics,in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 1, chapter 12, pages 477-542 Elsevier.
    5. Jan Hoem & Dan Madien & Jørgen Nielsen & Else-Marie Ohlsen & Hans Hansen & Bo Rennermalm, 1981. "Experiments in modelling recent Danish fertility curves," Demography, Springer;Population Association of America (PAA), vol. 18(2), pages 231-244, May.
    6. Harry Haupt & Walter Oberhofer & Thomas Reichsthaler, 2003. "A Varying-Coefficient Approach To Estimation And Extrapolation Of Household Size," Mathematical Population Studies, Taylor & Francis Journals, vol. 10(4), pages 249-273.
    7. Schultz, T. Paul, 1993. "Demand for children in low income countries," Handbook of Population and Family Economics,in: M. R. Rosenzweig & Stark, O. (ed.), Handbook of Population and Family Economics, edition 1, volume 1, chapter 8, pages 349-430 Elsevier.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Geburtenentwicklung ; Semiparametrische Schätzung ; Verallgemeinertes lineares Modell;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:677. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gernot Deinzer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.