IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275492.html
   My bibliography  Save this article

Projecting Spanish fertility at regional level: A hierarchical Bayesian approach

Author

Listed:
  • José Rafael Caro-Barrera
  • María de los Baños García-Moreno García
  • Manuel Pérez-Priego

Abstract

The transition from a demographic regime of high mortality and high fertility to one with low mortality and low fertility is universal and comes along with the process of socio-economic modernization. The Spanish total fertility rate has decreased to below replacement levels in the last decades. The decline has persisted since the 1960s and is diverse across the country. Based on that diversity, the use of population forecasts, not only at national but at regional levels, for planning purposes (governments and private sector) with large horizons has become a must to provide essential services. Using a Bayesian hierarchical model we constructed probabilistic fertility forecasts for Spain at the regional level. Although this approach is already issued by the United Nations little research has been done focusing on the Spanish subnational level. Our objective is to disaggregate the national projections of the total fertility rate for Spain into regional forecasts. The results of this research will show the model fitting, first to the national level and then using a multifaceted and continuous evolution of fertility over time, at the regional level, to check its convergence.

Suggested Citation

  • José Rafael Caro-Barrera & María de los Baños García-Moreno García & Manuel Pérez-Priego, 2022. "Projecting Spanish fertility at regional level: A hierarchical Bayesian approach," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-27, October.
  • Handle: RePEc:plo:pone00:0275492
    DOI: 10.1371/journal.pone.0275492
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275492
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275492&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paraskevi Peristera & Anastasia Kostaki, 2007. "Modeling fertility in modern populations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 16(6), pages 141-194.
    2. Peter McDonald, 2000. "Gender Equity in Theories of Fertility Transition," Population and Development Review, The Population Council, Inc., vol. 26(3), pages 427-439, September.
    3. Nicoletta Balbo & Francesco C. Billari & Melinda Mills, 2013. "Fertility in Advanced Societies: A Review of Research," European Journal of Population, Springer;European Association for Population Studies, vol. 29(1), pages 1-38, February.
    4. Joanne Ellison & Erengul Dodd & Jonathan J. Forster, 2020. "Forecasting of cohort fertility under a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 829-856, June.
    5. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    6. Wilde, Joshua & Chen, Wei & Lohmann, Sophie, 2020. "COVID-19 and the Future of US Fertility: What Can We Learn from Google?," SocArXiv 2bgqs, Center for Open Science.
    7. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
    8. Marcantonio Caltabiano & Alessandro Rosina & Maria Castiglioni, 2009. "Lowest-Low Fertility: Signs of a recovery in Italy?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(23), pages 681-718.
    9. Stephan Klasen & TU THI NGOC Le & Janneke Pieters & Manuel Santos Silva, 2021. "What Drives Female Labour Force Participation? Comparable Micro-level Evidence from Eight Developing and Emerging Economies," Journal of Development Studies, Taylor & Francis Journals, vol. 57(3), pages 417-442, March.
    10. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    11. Andrew Mason & Ronald Lee, 2011. "Population aging and the generational economy: key findings," Chapters, in: Ronald Lee & Andrew Mason (ed.), Population Aging and the Generational Economy, chapter 1, Edward Elgar Publishing.
    12. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    13. Sigle-Rushton, Wendy, 2008. "England and Wales: stable fertility and pronounced social status differences," LSE Research Online Documents on Economics 31307, London School of Economics and Political Science, LSE Library.
    14. Jan Hoem & Dan Madien & Jørgen Nielsen & Else-Marie Ohlsen & Hans Hansen & Bo Rennermalm, 1981. "Experiments in modelling recent Danish fertility curves," Demography, Springer;Population Association of America (PAA), vol. 18(2), pages 231-244, May.
    15. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    16. repec:osf:socarx:2bgqs_v1 is not listed on IDEAS
    17. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    18. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    19. S. Bermúdez & R. Blanquero & J. A. Hernández & J. Planelles, 2012. "A new parametric model for fitting fertility curves," Population Studies, Taylor & Francis Journals, vol. 66(3), pages 297-310.
    20. Regina Madalozzo, 2012. "Transitions in Fertility for Brazilian Women: An Analysis of Impact Factors," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-8, July.
    21. Wendy Sigle, 2008. "England and Wales: Stable fertility and pronounced social status differences," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(15), pages 455-502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    3. Arkadiusz Wiśniowski & James Raymer, 2025. "Multiregional Population Forecasting: A Unifying Probabilistic Approach for Modelling the Components of Change," European Journal of Population, Springer;European Association for Population Studies, vol. 41(1), pages 1-44, December.
    4. Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    6. Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
    7. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    8. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    10. Cristina Rueda-Sabater & Pedro Alvarez-Esteban, 2008. "The analysis of age-specific fertility patterns via logistic models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1053-1070.
    11. Joanne Ellison & Erengul Dodd & Jonathan J. Forster, 2020. "Forecasting of cohort fertility under a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 829-856, June.
    12. Niall Newsham & Francisco Rowe, 2021. "Projecting the demographic impact of Syrian migration in a rapidly ageing society, Germany," Journal of Geographical Systems, Springer, vol. 23(2), pages 231-261, April.
    13. Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2014. "Bayesian Forecasting of Cohort Fertility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 500-513, June.
    14. Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
    15. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    16. Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    18. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    19. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    20. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.