IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/2549.html
   My bibliography  Save this paper

Cooperative and Non-Cooperative Solutions in a Dynamic Model of Forest Management

Author

Listed:
  • Seyedalireza Seyedi
  • Elettra Agliardi

    (University of Bologna)

  • Anastasios Xepapadeas

Abstract

This study develops a finite-horizon optimal control model linking forest biomass, biodiversity, cumulative extraction, and stochastic disturbance shocks to assess three governance regimes: non-cooperative management with free terminal states (OLNE-Free) and two cooperative approaches - one with fixed ecological targets (Regulator-Fixed) and another with flexible endpoints (Regulator-Free). Non-cooperative harvesters prioritize short-term extraction, overlooking biodiversity's contribution to productivity and allowing extraction to accumulate. In contrast, cooperative regimes internalize ecological values and dynamically adjust harvest effort, resulting in improved ecological and economic outcomes. Cooperative management moderates harvesting intensity, enhances biodiversity, and increases overall welfare compared to non-cooperative approaches. Implementing mechanisms - such as fees, taxes, or regulations - that align private incentives with social values helps decentralize cooperation and buffers outcomes against parameter variability. Sensitivity analysis demonstrates that cooperative regimes consistently influence ecological changes and tend to promote more stable long-term dynamics. These findings highlight the critical role of biodiversity valuation and flexible cooperation in advancing sustainable forest management amid ecological and economic indeterminacies.

Suggested Citation

  • Seyedalireza Seyedi & Elettra Agliardi & Anastasios Xepapadeas, 2025. "Cooperative and Non-Cooperative Solutions in a Dynamic Model of Forest Management," DEOS Working Papers 2549, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:2549
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/2025.Forest.Management.SAX.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wunder, Sven, 2015. "Revisiting the concept of payments for environmental services," Ecological Economics, Elsevier, vol. 117(C), pages 234-243.
    2. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    3. Clarke, Harry R. & Reed, William J., 1989. "The tree-cutting problem in a stochastic environment : The case of age-dependent growth," Journal of Economic Dynamics and Control, Elsevier, vol. 13(4), pages 569-595, October.
    4. Reed, William J., 1979. "Optimal escapement levels in stochastic and deterministic harvesting models," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 350-363, December.
    5. Koskela, E. & Ollikainen, M., 2000. "Forest Rotation under Spatial and Temporal Interdependence: a Re-Exmination," University of Helsinki, Department of Economics 472, Department of Economics.
    6. William A. Brock & Anastasios Xepapadeas, 2003. "Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological, and Genetic Approach," American Economic Review, American Economic Association, vol. 93(5), pages 1597-1614, December.
    7. Loisel, Patrice, 2014. "Impact of storm risk on Faustmann rotation," Forest Policy and Economics, Elsevier, vol. 38(C), pages 191-198.
    8. David Tilman & Peter B. Reich & Johannes M. H. Knops, 2006. "Biodiversity and ecosystem stability in a decade-long grassland experiment," Nature, Nature, vol. 441(7093), pages 629-632, June.
    9. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    10. Snyder, Donald L. & Bhattacharyya, Rabindra N., 1990. "A more general dynamic economic model of the optimal rotation of multiple-use forests," Journal of Environmental Economics and Management, Elsevier, vol. 18(2), pages 168-175, March.
    11. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    12. Farley, Joshua & Costanza, Robert, 2010. "Payments for ecosystem services: From local to global," Ecological Economics, Elsevier, vol. 69(11), pages 2060-2068, September.
    13. Swallow Stephen K. & Wear David N., 1993. "Spatial Interactions in Multiple-Use Forestry and Substitution and Wealth Effects for the Single Stand," Journal of Environmental Economics and Management, Elsevier, vol. 25(2), pages 103-120, September.
    14. Baumgartner, Stefan & Becker, Christian & Faber, Malte & Manstetten, Reiner, 2006. "Relative and absolute scarcity of nature. Assessing the roles of economics and ecology for biodiversity conservation," Ecological Economics, Elsevier, vol. 59(4), pages 487-498, October.
    15. Stefan Baumgärtner & Martin F. Quaas, 2010. "Managing increasing environmental risks through agrobiodiversity and agrienvironmental policies," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 483-496, September.
    16. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A.Wardle & Ann P. Kinzig & Gret, 2012. "Correction: Corrigendum: Biodiversity loss and its impact on humanity," Nature, Nature, vol. 489(7415), pages 326-326, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    2. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    3. Liam Langan & Simon Scheiter & Thomas Hickler & Steven I. Higgins, 2025. "Amazon forest resistance to drought is increased by diversity in hydraulic traits," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Erickson, Jon D. & Chapman, Duane & Fahey, Timothy J. & Christ, Martin J., 1997. "Nonrenewability in Forest Rotations: Implications for Economic and Ecosystem Sustainability," Working Papers 127837, Cornell University, Department of Applied Economics and Management.
    5. Mengjiao Huang & Peter B. Reich & Shaopeng Wang & Yanhao Feng & Pubin Hong & Kathryn E. Barry & Miao He & Shengman Lyu & Shurong Zhou & Neha Mohanbabu & Forest Isbell & Yann Hautier, 2025. "Nitrogen and CO2 enrichment interact to decrease biodiversity impact on complementarity and selection effects," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Zhufeng Hou & Guanghui Lv & Lamei Jiang, 2021. "Functional Diversity Can Predict Ecosystem Functions Better Than Dominant Species: The Case of Desert Plants in the Ebinur Lake Basin," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    7. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    8. Pedro Daleo & Juan Alberti & Enrique J. Chaneton & Oscar Iribarne & Pedro M. Tognetti & Jonathan D. Bakker & Elizabeth T. Borer & Martín Bruschetti & Andrew S. MacDougall & Jesús Pascual & Mahesh Sank, 2023. "Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Eyal Frank & Anant Sudarshan, 2024. "The Social Costs of Keystone Species Collapse: Evidence from the Decline of Vultures in India," American Economic Review, American Economic Association, vol. 114(10), pages 3007-3040, October.
    10. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    11. Motoh, Tsujimura, 2004. "Optimal natural resources management under uncertainty with catastrophic risk," Energy Economics, Elsevier, vol. 26(3), pages 487-499, May.
    12. Finger, Robert & Buchmann, Nina, 2014. "An ecological economic assessment of risk reducing effects of species diversity in grassland production," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182681, European Association of Agricultural Economists.
    13. Frank, Eyal G. & Sudarshan, Anant, 2022. "The Social Costs of Keystone Species Collapse : Evidence From The Decline of Vultures in India," The Warwick Economics Research Paper Series (TWERPS) 1433, University of Warwick, Department of Economics.
    14. Strange, Niels & Jacobsen, Jette Bredahl & Thorsen, Bo Jellesmark, 2019. "Afforestation as a real option with joint production of environmental services," Forest Policy and Economics, Elsevier, vol. 104(C), pages 146-156.
    15. Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    16. Wang Tian & Huayong Zhang & Lei Zhao & Feifan Zhang & Hai Huang, 2017. "Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake," IJERPH, MDPI, vol. 14(1), pages 1-15, January.
    17. Zhu, Shuang-Guo & Tao, Hong-Yan & Li, Wen-Bo & Zhou, Rui & Gui, Yan-Wen & Zhu, Li & Zhang, Xiao-Lin & Wang, Wei & Wang, Bao-Zhong & Mei, Fu-Jian & Zhu, Hao & Xiong, You-Cai, 2023. "Phosphorus availability mediates plant–plant interaction and field productivity in maize-grass pea intercropping system: Field experiment and its global validation," Agricultural Systems, Elsevier, vol. 205(C).
    18. Yuzhu Zou & Zhenshan Liu & Yan Chen & Yin Wang & Shijing Feng, 2024. "Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience," Agriculture, MDPI, vol. 14(9), pages 1-14, August.
    19. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Erickson, Jon D. & Chapman, Duane & Fahey, Timothy J. & Christ, Martin J., 1999. "Non-renewability in forest rotations: implications for economic and ecosystem sustainability," Ecological Economics, Elsevier, vol. 31(1), pages 91-106, October.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:2549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.