Author
Listed:
- Liam Langan
(Senckenberg Biodiversity and Climate Research Centre)
- Simon Scheiter
(Senckenberg Biodiversity and Climate Research Centre)
- Thomas Hickler
(Senckenberg Biodiversity and Climate Research Centre
Goethe University)
- Steven I. Higgins
(University of Bayreuth)
Abstract
The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests’ drought resistance. Using a vegetation model capable of simulating observed tropical forest drought responses and trait diversity, we identify emergent trade-offs between water-related traits (hereafter hydraulic traits) as a key axis of variation. Our simulations reveal that higher functional trait diversity reduces site-scale biomass loss during sudden catastrophic drought, i.e., a 50% precipitation reduction for four and seven years, by 17% and 32%, respectively, and continental-scale biomass loss due to severe chronic climate change-associated precipitation reductions, i.e., RCP8.5, constant CO2 at 380 ppm, and a 50% precipitation reduction over 100 years, by 34%. Additionally, we find that functional trait diversity-mediated biomass resistance is stronger under more severe drought conditions. These findings quantify the essential role of hydraulic-trait diversity in enhancing tropical forest drought resistance and highlight the critical linkages between biodiversity conservation and climate change mitigation.
Suggested Citation
Liam Langan & Simon Scheiter & Thomas Hickler & Steven I. Higgins, 2025.
"Amazon forest resistance to drought is increased by diversity in hydraulic traits,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63600-1
DOI: 10.1038/s41467-025-63600-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63600-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.