IDEAS home Printed from https://ideas.repec.org/p/aua/wpaper/2013-6.html
   My bibliography  Save this paper

Multi-Criteria Decision Making on the Energy Supply Configuration of Autonomous Desalination Units

Author

Listed:
  • Dimitris Georgiou

    ("Postgraduate program in Agribusiness Management Agricultural University of Athens")

  • Essam Sh. Mohammed

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens)

  • Stelios Rozakis

    ("Department of Agricultural Economics and Rural Development Agricultural University of Athens")

Abstract

The important energy requirements for the desalination process impose especially in remote plants supply by Renewable Energy Sources (RES). In this paper five alternative energy generation topologies of Reverse Osmosis desalination process are evaluated. Proposed topologies assessed in terms of economic, environmental, technological and societal indices are compared using multi-criteria analysis, namely the Analytic Hierarchy Process (AHP) and PROMETHEE. Ranking of topologies resulted in the selection of direct connection and hybrid configuration. In case of economic priorities prevail diesel generation should also be considered.

Suggested Citation

  • Dimitris Georgiou & Essam Sh. Mohammed & Stelios Rozakis, 2013. "Multi-Criteria Decision Making on the Energy Supply Configuration of Autonomous Desalination Units," Working Papers 2013-6, Agricultural University of Athens, Department Of Agricultural Economics.
  • Handle: RePEc:aua:wpaper:2013-6
    as

    Download full text from publisher

    File URL: http://aoatools.aua.gr/RePEc/aua/wpaper/files/2013-6_georgiou.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raju, Komaragiri Srinivasa & Pillai, C. R. S., 1999. "Multicriterion decision making in river basin planning and development," European Journal of Operational Research, Elsevier, vol. 112(2), pages 249-257, January.
    2. Beccali, M. & Cellura, M. & Mistretta, M., 2003. "Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology," Renewable Energy, Elsevier, vol. 28(13), pages 2063-2087.
    3. Begić, Fajik & Afgan, Naim H., 2007. "Sustainability assessment tool for the decision making in selection of energy system—Bosnian case," Energy, Elsevier, vol. 32(10), pages 1979-1985.
    4. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    5. Aras, Haydar & Erdoğmuş, Şenol & Koç, Eylem, 2004. "Multi-criteria selection for a wind observation station location using analytic hierarchy process," Renewable Energy, Elsevier, vol. 29(8), pages 1383-1392.
    6. Lambert, Rosebud Jasmine & Silva, Patrícia Pereira, 2012. "The challenges of determining the employment effects of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4667-4674.
    7. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    8. Macharis, Cathy & Springael, Johan & De Brucker, Klaas & Verbeke, Alain, 2004. "PROMETHEE and AHP: The design of operational synergies in multicriteria analysis.: Strengthening PROMETHEE with ideas of AHP," European Journal of Operational Research, Elsevier, vol. 153(2), pages 307-317, March.
    9. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    10. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    11. Tourkolias, C. & Mirasgedis, S., 2011. "Quantification and monetization of employment benefits associated with renewable energy technologies in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2876-2886, August.
    12. Catalina, Tiberiu & Virgone, Joseph & Blanco, Eric, 2011. "Multi-source energy systems analysis using a multi-criteria decision aid methodology," Renewable Energy, Elsevier, vol. 36(8), pages 2245-2252.
    13. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    14. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    3. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    4. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    5. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    6. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    8. Gitinavard, Hossein & Mousavi, S. Meysam & Vahdani, Behnam, 2017. "Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: A case study," Energy, Elsevier, vol. 118(C), pages 556-577.
    9. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2020. "Optimal green energy source selection: An eclectic decision," Energy & Environment, , vol. 31(5), pages 842-859, August.
    10. Tsai, Yu-Ching & Chiu, Chih-Pin & Ko, Fu-Kuang & Chen, Tzong-Chyuan & Yang, Jing-Tang, 2016. "Desalination plants and renewables combined to solve power and water issues," Energy, Elsevier, vol. 113(C), pages 1018-1030.
    11. Kubińska, Elżbieta & Adamczyk-Kowalczuk, Magdalena & Andrzejewski, Mariusz & Rozakis, Stelios, 2022. "Incorporating the status quo effect into the decision making process: The case of municipal companies merger," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    12. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
    13. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2021. "Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13890-13918, September.
    14. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    15. Ahmed, Asam & Sutrisno, Setiadi Wicaksono & You, Siming, 2020. "A two-stage multi-criteria analysis method for planning renewable energy use and carbon saving," Energy, Elsevier, vol. 199(C).
    16. Irene Tzouramani & Stamatis Mantziaris & Pavlos Karanikolas, 2020. "Assessing Sustainability Performance at the Farm Level: Examples from Greek Agricultural Systems," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    17. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    18. Ondrej STOPKA & Mária STOPKOVÁ & Vladimír ĽUPTÁK & Srećko KRILE, 2020. "Application Of The Chosen Multi-Criteria Decision-Making Methods To Identify The Autonomous Train System Supplier," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(2), pages 45-57, June.
    19. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    20. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making," Energy, Elsevier, vol. 134(C), pages 103-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szántó, Richárd, 2012. "Több szempontú részvételi döntések a fenntarthatósági értékelésekben. A legnépszerűbb módszerek összehasonlítása [Participatory multi-criteria decision analysis. A comparison of methodologies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1336-1355.
    2. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    3. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    4. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    5. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    6. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    8. Strantzali, Eleni & Aravossis, Konstantinos & Livanos, Georgios A., 2017. "Evaluation of future sustainable electricity generation alternatives: The case of a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 775-787.
    9. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    10. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    11. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    12. Štreimikienė, Dalia & Šliogerienė, Jūratė & Turskis, Zenonas, 2016. "Multi-criteria analysis of electricity generation technologies in Lithuania," Renewable Energy, Elsevier, vol. 85(C), pages 148-156.
    13. Batubara, Marwan & Purwanto, Widodo Wahyu & Fauzi, Akhmad, 2016. "Proposing a decision-making process for the development of sustainable oil and gas resources using the petroleum fund: A case study of the East Natuna gas field," Resources Policy, Elsevier, vol. 49(C), pages 372-384.
    14. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    15. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    16. Kubińska, Elżbieta & Adamczyk-Kowalczuk, Magdalena & Andrzejewski, Mariusz & Rozakis, Stelios, 2022. "Incorporating the status quo effect into the decision making process: The case of municipal companies merger," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    17. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    18. Lerche, Nils & Wilkens, Ines & Schmehl, Meike & Eigner-Thiel, Swantje & Geldermann, Jutta, 2019. "Using methods of Multi-Criteria Decision Making to provide decision support concerning local bioenergy projects," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    19. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    20. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.

    More about this item

    Keywords

    desalination; reverse osmosis; topologies; multi-criteria analysis; renewable energy sources.;
    All these keywords.

    JEL classification:

    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aua:wpaper:2013-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kremmydas dimitrios (email available below). General contact details of provider: https://edirc.repec.org/data/daauagr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.