IDEAS home Printed from https://ideas.repec.org/p/ash/wpaper/57.html
   My bibliography  Save this paper

Attack and Interception in Networks

Author

Listed:
  • Francis Bloch

    (` Paris School of Economics)

  • Kalyan Chatterjee

    (` Pennsylvania State University)

  • Bhaskar Dutta

    (` Department of Economics, Ashoka University)

Abstract

This paper studies a game of attack and interception in a network, where a single attacker chooses a target and a path, and each node chooses a level of protection. We show that the Nash equilibrium of the game exists and is unique. It involves a mixed strategy of the attacker except when one target has a very high value relative to others. We characterize equilibrium attack paths and attack distributions as a function of the underlying network and target values. We also show that adding a link or increasing the value of a target may harm the attacker - a comparative statics effect which is reminiscent of Braess's paradox in transportation economics. Finally, we contrast the Nash equilibrium with the equilibria of two variations of the model: one where nodes make sequential protection decisions upon observing the arrival of a suspicious object, and one where all nodes cooperate in defense.

Suggested Citation

  • Francis Bloch & Kalyan Chatterjee & Bhaskar Dutta, 2021. "Attack and Interception in Networks," Working Papers 57, Ashoka University, Department of Economics.
  • Handle: RePEc:ash:wpaper:57
    as

    Download full text from publisher

    File URL: https://dp.ashoka.edu.in/ash/wpaper/paper57_0.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    2. Sanjeev Goyal & Adrien Vigier, 2014. "Attack, Defence, and Contagion in Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(4), pages 1518-1542.
    3. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    4. Christian Dustmann & Francesco Fasani & Tommaso Frattini & Luigi Minale & Uta Schönberg, 2017. "On the economics and politics of refugee migration," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 32(91), pages 497-550.
    5. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    6. Bloch, Francis & Dutta, Bhaskar & Dziubiński, Marcin, 2020. "A game of hide and seek in networks," Journal of Economic Theory, Elsevier, vol. 190(C).
    7. Dziubiński, Marcin Konrad & Goyal, Sanjeev, 2017. "How do you defend a network?," Theoretical Economics, Econometric Society, vol. 12(1), January.
    8. Melissa Dell, 2015. "Trafficking Networks and the Mexican Drug War," American Economic Review, American Economic Association, vol. 105(6), pages 1738-1779, June.
    9. Alan W. McMasters & Thomas M. Mustin, 1970. "Optimal interdiction of a supply network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 17(3), pages 261-268, September.
    10. Dziubiński, Marcin & Goyal, Sanjeev, 2013. "Network design and defence," Games and Economic Behavior, Elsevier, vol. 79(C), pages 30-43.
    11. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    12. Geoffrey Heal & Howard Kunreuther, 2005. "IDS Models of Airline Security," Journal of Conflict Resolution, Peace Science Society (International), vol. 49(2), pages 201-217, April.
    13. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    14. Bruce Golden, 1978. "A problem in network interdiction," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(4), pages 711-713, December.
    15. repec:oup:restud:v:81:y:2014:i:4:p:1518-1542. is not listed on IDEAS
    16. Cerdeiro, Diego A. & Dziubiński, Marcin & Goyal, Sanjeev, 2017. "Individual security, contagion, and network design," Journal of Economic Theory, Elsevier, vol. 170(C), pages 182-226.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    3. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    4. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    5. Alessandro Fedele & Cristian Roner, 2022. "Dangerous games: A literature review on cybersecurity investments," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 157-187, February.
    6. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    7. Tayyebi, Javad & Mitra, Ankan & Sefair, Jorge A., 2023. "The continuous maximum capacity path interdiction problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 38-52.
    8. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    9. Bloch, Francis & Dutta, Bhaskar & Dziubiński, Marcin, 2020. "A game of hide and seek in networks," Journal of Economic Theory, Elsevier, vol. 190(C).
    10. Britta Hoyer & Kris De Jaegher, 2023. "Network disruption and the common-enemy effect," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 117-155, March.
    11. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    12. Young‐Soo Myung & Hyun‐Joon Kim, 2007. "Network disconnection problems in a centralized network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 710-719, October.
    13. Shen, Yeming & Sharkey, Thomas C. & Szymanski, Boleslaw K. & Wallace, William (Al), 2021. "Interdicting interdependent contraband smuggling, money and money laundering networks," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    14. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    15. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    16. Manxi Wu & Saurabh Amin, 2019. "Securing Infrastructure Facilities: When Does Proactive Defense Help?," Dynamic Games and Applications, Springer, vol. 9(4), pages 984-1025, December.
    17. Noam Goldberg, 2017. "Non‐zero‐sum nonlinear network path interdiction with an application to inspection in terror networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 139-153, March.
    18. Kosanoglu, Fuat & Bier, Vicki M., 2020. "Target-oriented utility for interdiction of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    19. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    20. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.

    More about this item

    Keywords

    Attack and defense;

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ash:wpaper:57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ashoka University (email available below). General contact details of provider: https://www.ashoka.edu.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.