IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v179y2018icp62-73.html
   My bibliography  Save this article

Stochastic shortest path network interdiction with a case study of Arizona–Mexico border

Author

Listed:
  • Zhang, Jing
  • Zhuang, Jun
  • Behlendorf, Brandon

Abstract

One of the key challenges in securing the U.S.-Mexico border is the smuggling of illicit goods and humans between Ports-of-Entry (POEs). A confluence of factors advantageous to traffickers including inconsistent levels of fencing, favorable terrain, and expansive knowledge of specific pathways have contributed to the establishment of preferred routes of illicit transit, yet little is known about the strategic interaction between adversaries and defenders between the POEs. To address this challenge, this paper studies a stochastic shortest-path network interdiction problem where the attacker (drug smugglers, illegal immigrants, or terrorists) attempts to minimize the expected shortest traveling time between the source and the destination, while the defender attempts to maximize the attacker’s expected shortest traveling time by allocating sensors to the arcs to detect the attacker with a limited budget. Using a probabilistic detection likelihood, we formulate bi-level max-min mixed-integer problems on a multi-modal licit and illicit transportation network along the Arizona–Mexico border considering single source and single destination, and multiple sources and multiple destinations, respectively. We find that (a) the expected shortest traveling time will increase as the budget/detection probability increase; (b) the expected shortest time by walking is more than 3 times long than by driving; (c) the multiple sources and multiple destinations model which allows the attacker to choose a random source-destination pair leads to a shorter time than the single source and single destination model. A graphical user interface (GUI) is developed to assist decision making and demonstrate the results.

Suggested Citation

  • Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
  • Handle: RePEc:eee:reensy:v:179:y:2018:i:c:p:62-73
    DOI: 10.1016/j.ress.2017.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017312796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Johnson & Alexander Gutfraind & Kiyan Ahmadizadeh, 2014. "Evader interdiction: algorithms, complexity and collateral damage," Annals of Operations Research, Springer, vol. 222(1), pages 341-359, November.
    2. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    3. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    4. Kjell Hausken & Jun Zhuang, 2011. "Defending Against a Stockpiling Terrorist," The Engineering Economist, Taylor & Francis Journals, vol. 56(4), pages 321-353.
    5. Mohsen Golalikhani & Jun Zhuang, 2011. "Modeling Arbitrary Layers of Continuous‐Level Defenses in Facing with Strategic Attackers," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 533-547, April.
    6. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    7. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    8. Alan W. McMasters & Thomas M. Mustin, 1970. "Optimal interdiction of a supply network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 17(3), pages 261-268, September.
    9. Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.
    10. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    11. Nedialko Dimitrov & Dennis Michalopoulos & David Morton & Michael Nehme & Feng Pan & Elmira Popova & Erich Schneider & Gregory Thoreson, 2011. "Network deployment of radiation detectors with physics-based detection probability calculations," Annals of Operations Research, Springer, vol. 187(1), pages 207-228, July.
    12. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    13. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    14. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    15. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    16. Arthur M. Geoffrion, 1970. "Elements of Large-Scale Mathematical Programming Part I: Concepts," Management Science, INFORMS, vol. 16(11), pages 652-675, July.
    17. Hausken, Kjell, 2010. "Defense and attack of complex and dependent systems," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 29-42.
    18. Bier, Vicki M. & Gratz, Eli R. & Haphuriwat, Naraphorn J. & Magua, Wairimu & Wierzbicki, Kevin R., 2007. "Methodology for identifying near-optimal interdiction strategies for a power transmission system," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1155-1161.
    19. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    3. Tezcan, Barış & Maass, Kayse Lee, 2023. "Human trafficking interdiction with decision dependent success," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    4. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    6. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    7. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    8. Xiaodan Xie & Felipe Aros‐Vera, 2022. "An interdependent network interdiction model for disrupting sex trafficking networks," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2695-2713, June.
    9. M. Hosein Zare & Oleg A. Prokopyev & Denis Sauré, 2020. "On Bilevel Optimization with Inexact Follower," Decision Analysis, INFORMS, vol. 17(1), pages 74-95, March.
    10. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    3. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    4. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.
    5. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    6. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    7. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    8. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    9. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    10. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Bakker, Craig & Webster, Jennifer B. & Nowak, Kathleen E. & Chatterjee, Samrat & Perkins, Casey J. & Brigantic, Robert, 2020. "Multi-Game Modeling for Counter-Smuggling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle & R. Kevin Wood, 2018. "Assessing and Improving the Operational Resilience of a Large Highway Infrastructure System to Worst-Case Losses," Transportation Science, INFORMS, vol. 52(4), pages 1012-1034, August.
    13. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    14. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    15. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Kosanoglu, Fuat & Bier, Vicki M., 2020. "Target-oriented utility for interdiction of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    17. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    18. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    19. Young‐Soo Myung & Hyun‐Joon Kim, 2007. "Network disconnection problems in a centralized network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 710-719, October.
    20. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:179:y:2018:i:c:p:62-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.