IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0701650.html
   My bibliography  Save this paper

Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

Author

Listed:
  • Erhan Bayraktar
  • Virginia R. Young

Abstract

We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Sa\'{a}-Requejo (2000) and of Bj\"{o}rk and Slinko (2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque, Papanicolaou, and Sircar (2000).

Suggested Citation

  • Erhan Bayraktar & Virginia R. Young, 2007. "Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio," Papers math/0701650, arXiv.org, revised Jul 2007.
  • Handle: RePEc:arx:papers:math/0701650
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0701650
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    2. Schweizer, Martin, 2001. "From actuarial to financial valuation principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 31-47, February.
    3. Tim Leung & Ronnie Sircar, 2009. "Accounting For Risk Aversion, Vesting, Job Termination Risk And Multiple Exercises In Valuation Of Employee Stock Options," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 99-128.
    4. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Kraeussl & Christian Wiehenkamp, 2012. "A call on art investments," Review of Derivatives Research, Springer, vol. 15(1), pages 1-23, April.
    2. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    3. Bisetti, Emilio & Favero, Carlo A. & Nocera, Giacomo & Tebaldi, Claudio, 2017. "A Multivariate Model of Strategic Asset Allocation with Longevity Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(05), pages 2251-2275, October.
    4. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    5. L. Carassus & E. Temam, 2014. "Pricing and hedging basis risk under no good deal assumption," Annals of Finance, Springer, vol. 10(1), pages 127-170, February.
    6. repec:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0588-y is not listed on IDEAS
    7. Dirk Becherer & Klebert Kentia, 2016. "Hedging under generalized good-deal bounds and model uncertainty," Papers 1607.04488, arXiv.org, revised Apr 2017.
    8. Laurence Carassus & Emmanuel Temam, 2010. "Pricing and Hedging Basis Risk under No Good Deal Assumption," Working Papers hal-00498479, HAL.
    9. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0701650. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.