IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v33y2009i3p676-691.html
   My bibliography  Save this article

Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities

Author

Listed:
  • Bayraktar, Erhan
  • Milevsky, Moshe A.
  • David Promislow, S.
  • Young, Virginia R.

Abstract

We develop a theory for valuing non-diversifiable mortality risk in an incomplete market by assuming that the company issuing a mortality-contingent claim requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. We apply our method to value life annuities. One result of our paper is that the value of the life annuity is identical to the upper good deal bound of Cochrane and Saá-Requejo [2000. Beyond arbitrage: good deal asset price bounds in incomplete markets. Journal of Political Economy 108, 79-119] and of Björk and Slinko [2006. Towards a general theory of good deal bounds. Review of Finance 10, 221-260] applied to our setting. A second result of our paper is that the value per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can represent the limiting value as an expectation with respect to an equivalent martingale measure, and from this representation, one can interpret the instantaneous Sharpe ratio as an annuity market's price of mortality risk.

Suggested Citation

  • Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:3:p:676-691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00162-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    2. Tomas Björk & Irina Slinko, 2006. "Towards a General Theory of Good-Deal Bounds," Review of Finance, European Finance Association, vol. 10(2), pages 221-260.
    3. Erhan Bayraktar & Virginia Young, 2008. "Pricing options in incomplete equity markets via the instantaneous Sharpe ratio," Annals of Finance, Springer, vol. 4(4), pages 399-429, October.
    4. Boyle, Phelim & Hardy, Mary, 2003. "Guaranteed Annuity Options," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 125-152, November.
    5. Horneff, Wolfram J. & Maurer, Raimond H. & Stamos, Michael Z., 2008. "Life-cycle asset allocation with annuity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3590-3612, November.
    6. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    7. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    8. M. A. Milevsky & S. D. Promislow & V. R. Young, 2006. "Killing the Law of Large Numbers: Mortality Risk Premiums and the Sharpe Ratio," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 673-686.
    9. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    10. Shaun, Wang, 1995. "Insurance pricing and increased limits ratemaking by proportional hazards transforms," Insurance: Mathematics and Economics, Elsevier, vol. 17(1), pages 43-54, August.
    11. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    12. Schweizer, Martin, 2001. "From actuarial to financial valuation principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 31-47, February.
    13. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    14. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    15. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    16. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    2. Bisetti, Emilio & Favero, Carlo A. & Nocera, Giacomo & Tebaldi, Claudio, 2017. "A Multivariate Model of Strategic Asset Allocation with Longevity Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(05), pages 2251-2275, October.
    3. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    4. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    5. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2018. "Indifference pricing of life insurance contracts via BSDEs under partial information," Papers 1804.00223, arXiv.org.
    6. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2016. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Working Papers hal-01258645, HAL.
    7. Hua Chen & Michael Sherris & Tao Sun & Wenge Zhu, 2013. "Living With Ambiguity: Pricing Mortality-Linked Securities With Smooth Ambiguity Preferences," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 705-732, September.
    8. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2017. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Post-Print hal-01258645, HAL.
    9. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:3:p:676-691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.