IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.25899.html
   My bibliography  Save this paper

Deep learning CAT bond valuation

Author

Listed:
  • Julian Sester
  • Huansang Xu

Abstract

In this paper, we propose an alternative valuation approach for CAT bonds where a pricing formula is learned by deep neural networks. Once trained, these networks can be used to price CAT bonds as a function of inputs that reflect both the current market conditions and the specific features of the contract. This approach offers two main advantages. First, due to the expressive power of neural networks, the trained model enables fast and accurate evaluation of CAT bond prices. Second, because of its fast execution the trained neural network can be easily analyzed to study its sensitivities w.r.t. changes of the underlying market conditions offering valuable insights for risk management.

Suggested Citation

  • Julian Sester & Huansang Xu, 2025. "Deep learning CAT bond valuation," Papers 2509.25899, arXiv.org.
  • Handle: RePEc:arx:papers:2509.25899
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.25899
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Neufeld & Julian Sester, 2023. "Neural networks can detect model-free static arbitrage strategies," Papers 2306.16422, arXiv.org, revised Aug 2024.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    5. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    6. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2011. "Statistical Tools for Finance and Insurance (2nd edition)," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook1101, December.
    7. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    8. Lütkebohmert, Eva & Sester, Julian, 2025. "Measuring name concentrations through deep learning," International Review of Financial Analysis, Elsevier, vol. 107(C).
    9. Jarrow, Robert A., 2010. "A simple robust model for Cat bond valuation," Finance Research Letters, Elsevier, vol. 7(2), pages 72-79, June.
    10. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2024. "Earthquake Bond Pricing Model Involving the Inconstant Event Intensity and Maximum Strength," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    2. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    3. Shao, Jia & Papaioannou, Apostolos D. & Pantelous, Athanasios A., 2017. "Pricing and simulating catastrophe risk bonds in a Markov-dependent environment," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 68-84.
    4. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    5. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    6. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    7. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    8. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    9. Juneja, Januj, 2014. "Term structure estimation in the presence of autocorrelation," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 119-129.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Driessen, Joost & Melenberg, Bertrand & Nijman, Theo, 2005. "Testing affine term structure models in case of transaction costs," Journal of Econometrics, Elsevier, vol. 126(1), pages 201-232, May.
    12. Peter Hördahl & David Vestin, 2005. "Interpreting Implied Risk-Neutral Densities: The Role of Risk Premia," Review of Finance, European Finance Association, vol. 9(1), pages 97-137.
    13. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    14. Shu Wu, 2007. "Interest Rate Risk and the Forward Premium Anomaly in Foreign Exchange Markets," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 423-442, March.
    15. Mikhail Makushkin & Victor Lapshin, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    16. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    17. Dimitri Vayanos & Jean‐Luc Vila, 2021. "A Preferred‐Habitat Model of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 89(1), pages 77-112, January.
    18. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    19. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    20. Jiazi Chen & Zhiwu Hong & Linlin Niu, 2022. "Forecasting Interest Rates with Shifting Endpoints: The Role of the Demographic Age Structure," Working Papers 2022-06-25, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.25899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.