IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.03063.html
   My bibliography  Save this paper

Distribution-valued Causal Machine Learning: Implications of Credit on Spending Patterns

Author

Listed:
  • Cheuk Hang Leung
  • Yijun Li
  • Qi Wu

Abstract

Fintech lending has become a central mechanism through which digital platforms stimulate consumption, offering dynamic, personalized credit limits that directly shape the purchasing power of consumers. Although prior research shows that higher limits increase average spending, scalar-based outcomes obscure the heterogeneous distributional nature of consumer responses. This paper addresses this gap by proposing a new causal inference framework that estimates how continuous changes in the credit limit affect the entire distribution of consumer spending. We formalize distributional causal effects within the Wasserstein space and introduce a robust Distributional Double Machine Learning estimator, supported by asymptotic theory to ensure consistency and validity. To implement this estimator, we design a deep learning architecture comprising two components: a Neural Functional Regression Net to capture complex, nonlinear relationships between treatments, covariates, and distributional outcomes, and a Conditional Normalizing Flow Net to estimate generalized propensity scores under continuous treatment. Numerical experiments demonstrate that the proposed estimator accurately recovers distributional effects in a range of data-generating scenarios. Applying our framework to transaction-level data from a major BigTech platform, we find that increased credit limits primarily shift consumers towards higher-value purchases rather than uniformly increasing spending, offering new insights for personalized marketing strategies and digital consumer finance.

Suggested Citation

  • Cheuk Hang Leung & Yijun Li & Qi Wu, 2025. "Distribution-valued Causal Machine Learning: Implications of Credit on Spending Patterns," Papers 2509.03063, arXiv.org.
  • Handle: RePEc:arx:papers:2509.03063
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.03063
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    2. Deniz Aydin, 2022. "Consumption Response to Credit Expansions: Evidence from Experimental Assignment of 45,307 Credit Lines," American Economic Review, American Economic Association, vol. 112(1), pages 1-40, January.
    3. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    5. David B. Gross & Nicholas S. Souleles, 2002. "Do Liquidity Constraints and Interest Rates Matter for Consumer Behavior? Evidence from Credit Card Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 149-185.
    6. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    7. Feinberg, Richard A, 1986. "Credit Cards as Spending Facilitating Stimuli: A Conditioning Interpretation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(3), pages 348-356, December.
    8. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    9. Jappelli, Tullio & Pagano, Marco, 1989. "Consumption and Capital Market Imperfections: An International Comparison," American Economic Review, American Economic Association, vol. 79(5), pages 1088-1105, December.
    10. Tetyana Balyuk, 2023. "FinTech Lending and Bank Credit Access for Consumers," Management Science, INFORMS, vol. 69(1), pages 555-575, January.
    11. Jie Li & Quanyun Song & Yu Wu & Bihong Huang, 2021. "The effects of online consumer credit on household consumption level and structure: Evidence from China," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(4), pages 1614-1632, December.
    12. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    13. Dilip Soman & Amar Cheema, 2002. "The Effect of Credit on Spending Decisions: The Role of the Credit Limit and Credibility," Marketing Science, INFORMS, vol. 21(1), pages 32-53, September.
    14. Agarwal, Sumit & Chomsisengphet, Souphala & Meier, Stephan & Zou, Xin, 2020. "In the mood to consume: Effect of sunshine on credit card spending," Journal of Banking & Finance, Elsevier, vol. 121(C).
    15. Cornelli, Giulio & Frost, Jon & Gambacorta, Leonardo & Rau, P. Raghavendra & Wardrop, Robert & Ziegler, Tania, 2023. "Fintech and big tech credit: Drivers of the growth of digital lending," Journal of Banking & Finance, Elsevier, vol. 148(C).
    16. E H Kennedy & S Balakrishnan & L A Wasserman, 2023. "Semiparametric counterfactual density estimation," Biometrika, Biometrika Trust, vol. 110(4), pages 875-896.
    17. Sumit Agarwal & Chunlin Liu & Nicholas S. Souleles, 2007. "The Reaction of Consumer Spending and Debt to Tax Rebates-Evidence from Consumer Credit Data," Journal of Political Economy, University of Chicago Press, vol. 115(6), pages 986-1019, December.
    18. Hirschman, Elizabeth C, 1979. "Differences in Consumer Purchase Behavior by Credit Card Payment System," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 6(1), pages 58-66, June.
    19. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    20. Emily Breza & Cynthia Kinnan, 2021. "Measuring the Equilibrium Impacts of Credit: Evidence from the Indian Microfinance Crisis," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1447-1497.
    21. Abhijit Banerjee & Dean Karlan & Jonathan Zinman, 2015. "Six Randomized Evaluations of Microcredit: Introduction and Further Steps," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 1-21, January.
    22. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    23. Bacchetta, Philippe & Gerlach, Stefan, 1997. "Consumption and credit constraints: International evidence," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 207-238, October.
    24. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Bazley, William & Jannati, Sima, 2024. "The influence of regional sentiment on online borrowing," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    3. Besley, Tim & Surico, Paolo & Meads, Neil, 2008. "Household External Finance and Consumption," CEPR Discussion Papers 6934, C.E.P.R. Discussion Papers.
    4. Yijun Li & Cheuk Hang Leung & Xiangqian Sun & Chaoqun Wang & Yiyan Huang & Xing Yan & Qi Wu & Dongdong Wang & Zhixiang Huang, 2023. "The Causal Impact of Credit Lines on Spending Distributions," Papers 2312.10388, arXiv.org.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    7. Orazio P. Attanasio & Guglielmo Weber, 2010. "Consumption and Saving: Models of Intertemporal Allocation and Their Implications for Public Policy," Journal of Economic Literature, American Economic Association, vol. 48(3), pages 693-751, September.
    8. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    9. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    12. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    13. Harsh Parikh & Cynthia Rudin & Alexander Volfovsky, 2018. "MALTS: Matching After Learning to Stretch," Papers 1811.07415, arXiv.org, revised Jun 2023.
    14. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Mar 2025.
    15. Zeqi Wu & Meilin Wang & Wei Huang & Zheng Zhang, 2025. "A New and Efficient Debiased Estimation of General Treatment Models by Balanced Neural Networks Weighting," Papers 2507.04044, arXiv.org.
    16. Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022. "Estimation of Conditional Average Treatment Effects With High-Dimensional Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
    17. Hang Miao & Kui Zhao & Zhun Wang & Linbo Jiang & Quanhui Jia & Yanming Fang & Quan Yu, 2020. "Intelligent Credit Limit Management in Consumer Loans Based on Causal Inference," Papers 2007.05188, arXiv.org.
    18. Ying-Ying Lee & Chu-An Liu, 2024. "Lee Bounds with a Continuous Treatment in Sample Selection," Papers 2411.04312, arXiv.org, revised Oct 2025.
    19. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    20. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.03063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.