IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.18207.html
   My bibliography  Save this paper

Combination of traditional and parametric insurance: calibration method based on the optimization of a criterion adapted to heavy tail losses

Author

Listed:
  • Olivier Lopez

    (CREST)

  • Daniel Nkameni

    (CREST)

Abstract

In this paper, we consider the question of providing insurance protection against heavy tail losses, where the expectation of the loss may not even be finite. The product we study is based on a combination of traditional insurance up to some limit, and a parametric (or index-based) cover for larger losses. This second part of the cover is computed from covariates available just after the claim, allowing to reduce the claim management costs via an instant compensation. To optimize the design of this second part of the product, we use a criterion which is adapted to extreme losses (that is distribution of the losses that are of Pareto type). We support the calibration procedure by theoretical results that show its convergence rate, and empirical results from a simulation study and a real data analysis on tornados in the US. We conclude our study by empirically demonstrating that the proposed hybrid contract outperforms a traditional capped indemnity contract.

Suggested Citation

  • Olivier Lopez & Daniel Nkameni, 2025. "Combination of traditional and parametric insurance: calibration method based on the optimization of a criterion adapted to heavy tail losses," Papers 2507.18207, arXiv.org.
  • Handle: RePEc:arx:papers:2507.18207
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.18207
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Zheng & Li, Yunxian & Zhang, Minghui & Liu, Yifei, 2023. "Modelling economic losses from earthquakes using regression forests: Application to parametric insurance," Economic Modelling, Elsevier, vol. 125(C).
    2. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    3. Hong Mao & Krzysztof Ostaszewski, 2021. "Optimal Claim Settlement Strategies under Constraint of Cap on Claim Loss," Mathematics, MDPI, vol. 9(24), pages 1-12, December.
    4. Barry J. Barnett & Olivier Mahul, 2007. "Weather Index Insurance for Agriculture and Rural Areas in Lower-Income Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1241-1247.
    5. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    6. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    7. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    8. Zhou, Chunyang & Wu, Wenfeng & Wu, Chongfeng, 2010. "Optimal insurance in the presence of insurer's loss limit," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 300-307, April.
    9. Loretta Mastroeni & Alessandro Mazzoccoli & Maurizio Naldi, 2022. "Pricing Cat Bonds for Cloud Service Failures," JRFM, MDPI, vol. 15(10), pages 1-18, October.
    10. Zhanhui Chen & Yang Lu & Jinggong Zhang & Wenjun Zhu, 2024. "Managing Weather Risk with a Neural Network-Based Index Insurance," Management Science, INFORMS, vol. 70(7), pages 4306-4327, July.
    11. Ghada Elabed & Marc F. Bellemare & Michael R. Carter & Catherine Guirkinger, 2013. "Managing basis risk with multiscale index insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(4-5), pages 419-431, July.
    12. Ken Seng Tan & Jinggong Zhang, 2024. "Flexible Weather Index Insurance Design with Penalized Splines," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(1), pages 1-26, January.
    13. Xiao Lin & W. Jean Kwon, 2020. "Application of parametric insurance in principle‐compliant and innovative ways," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 23(2), pages 121-150, June.
    14. Braun, Alexander & Eling, Martin & Jaenicke, Christoph, 2023. "Cyber insurance-linked securities," ASTIN Bulletin, Cambridge University Press, vol. 53(3), pages 684-705, September.
    15. Michael Carter & Alain de Janvry & Elisabeth Sadoulet & Alexandros Sarris, 2017. "Index Insurance for Developing Country Agriculture: A Reassessment," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 421-438, October.
    16. Sarah Conradt & Robert Finger & Raushan Bokusheva, 2015. "Tailored to the extremes: Quantile regression for index-based insurance contract design," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 537-547, July.
    17. Michael Carter & Alain de Janvry & Elisabeth Sadoulet & Alexandros Sarris, 2017. "Index Insurance for Developing Country Agriculture: A Reassessment," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 421-438, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Stoeffler & Michael Carter & Catherine Guirkinger & Wouter Gelade, 2022. "The Spillover Impact of Index Insurance on Agricultural Investment by Cotton Farmers in Burkina Faso," The World Bank Economic Review, World Bank, vol. 36(1), pages 114-140.
    2. Matthieu Stigler & David Lobell, 2024. "Optimal index insurance and basis risk decomposition: an application to Kenya," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 306-329, January.
    3. Stoeffler, Quentin & Opuz, Gülce, 2022. "Price, information and product quality: Explaining index insurance demand in Burkina Faso," Food Policy, Elsevier, vol. 108(C).
    4. Matthieu Stigler & David Lobell, 2020. "On the benefits of index insurance in US agriculture: a large-scale analysis using satellite data," Papers 2011.12544, arXiv.org, revised Nov 2021.
    5. Shih‐Chieh Liao & Shih‐Chieh Chang & Tsung‐Chi Cheng, 2022. "Index‐based renewable energy insurance for Taiwan Solar Photovoltaic Power Plants," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(2), pages 145-172, June.
    6. Jensen, Nathaniel & Stoeffler, Quentin & Fava, Francesco & Vrieling, Anton & Atzberger, Clement & Meroni, Michele & Mude, Andrew & Carter, Michael, 2019. "Does the design matter? Comparing satellite-based indices for insuring pastoralists against drought," Ecological Economics, Elsevier, vol. 162(C), pages 59-73.
    7. Stigler, Matthieu M. & Lobell, David, 2020. "Suitability of index insurance: new insights from satellite data," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304663, Agricultural and Applied Economics Association.
    8. Castaing, Pauline & Gazeaud, Jules, 2025. "Do index insurance programs live up to their promises? Aggregating evidence from multiple experiments," Journal of Development Economics, Elsevier, vol. 175(C).
    9. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    10. Matthieu Stigler & Apratim Dey & Andrew Hobbs & David Lobell, 2022. "With big data come big problems: pitfalls in measuring basis risk for crop index insurance," Papers 2209.14611, arXiv.org.
    11. Erwin Bulte & Rein Haagsma, 2021. "The Welfare Effects of Index-Based Livestock Insurance: Livestock Herding on Communal Lands," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 587-613, April.
    12. Sarah A. Janzen & Michael R. Carter & Munenobu Ikegami, 2021. "Can insurance alter poverty dynamics and reduce the cost of social protection in developing countries?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 293-324, June.
    13. Boyd, Chris M. & Bellemare, Marc F., 2022. "Why not insure prices? Experimental evidence from Peru," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 580-631.
    14. Abdullah Al-Maruf & Sumyia Akter Mira & Tasnim Nazira Rida & Md Saifur Rahman & Pradip Kumar Sarker & J. Craig Jenkins, 2021. "Piloting a Weather-Index-Based Crop Insurance System in Bangladesh: Understanding the Challenges of Financial Instruments for Tackling Climate Risks," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    15. Zed Zulkafli & Farrah Melissa Muharam & Nurfarhana Raffar & Amirparsa Jajarmizadeh & Mukhtar Jibril Abdi & Balqis Mohamed Rehan & Khairudin Nurulhuda, 2021. "Contrasting Influences of Seasonal and Intra-Seasonal Hydroclimatic Variabilities on the Irrigated Rice Paddies of Northern Peninsular Malaysia for Weather Index Insurance Design," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
    16. Shin, Soye & Magnan, Nicholas & Mullally, Conner & Janzen, Sarah, 2022. "Demand for Weather Index Insurance among Smallholder Farmers under Prospect Theory," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 82-104.
    17. Enrico Biffis & Erik Chavez, 2017. "Satellite Data and Machine Learning for Weather Risk Management and Food Security," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1508-1521, August.
    18. Eric Le Fur & J. François Outreville, 2021. "Real Options and Reduction of Basic Risk of Index‐Based Climate Agricultural Insurance," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1658-1671, December.
    19. Möllmann, Johannes & Buchholz, Matthias & Kölle, Wienand & Musshoff, Oliver, 2020. "Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance?," World Development, Elsevier, vol. 127(C).
    20. Mogge, Lukas, 2023. "A District-Level Analysis of the Effect of Risk Exposure on the Demand for Index Insurance in Mongolia," Ruhr Economic Papers 1018, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.