IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01972.html
   My bibliography  Save this paper

Accelerated Portfolio Optimization and Option Pricing with Reinforcement Learning

Author

Listed:
  • Hadi Keramati
  • Samaneh Jazayeri

Abstract

We present a reinforcement learning (RL)-driven framework for optimizing block-preconditioner sizes in iterative solvers used in portfolio optimization and option pricing. The covariance matrix in portfolio optimization or the discretization of differential operators in option pricing models lead to large linear systems of the form $\mathbf{A}\textbf{x}=\textbf{b}$. Direct inversion of high-dimensional portfolio or fine-grid option pricing incurs a significant computational cost. Therefore, iterative methods are usually used for portfolios in real-world situations. Ill-conditioned systems, however, suffer from slow convergence. Traditional preconditioning techniques often require problem-specific parameter tuning. To overcome this limitation, we rely on RL to dynamically adjust the block-preconditioner sizes and accelerate iterative solver convergence. Evaluations on a suite of real-world portfolio optimization matrices demonstrate that our RL framework can be used to adjust preconditioning and significantly accelerate convergence and reduce computational cost. The proposed accelerated solver supports faster decision-making in dynamic portfolio allocation and real-time option pricing.

Suggested Citation

  • Hadi Keramati & Samaneh Jazayeri, 2025. "Accelerated Portfolio Optimization and Option Pricing with Reinforcement Learning," Papers 2507.01972, arXiv.org.
  • Handle: RePEc:arx:papers:2507.01972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01972
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.