Author
Listed:
- Jiang Hu
- Jiahui Xie
- Yangchun Zhang
- Wang Zhou
Abstract
Factor models are essential tools for analyzing high-dimensional data, particularly in economics and finance. However, standard methods for determining the number of factors often overestimate the true number when data exhibit heavy-tailed randomness, misinterpreting noise-induced outliers as genuine factors. This paper addresses this challenge within the framework of Elliptical Factor Models (EFM), which accommodate both heavy tails and potential non-linear dependencies common in real-world data. We demonstrate theoretically and empirically that heavy-tailed noise generates spurious eigenvalues that mimic true factor signals. To distinguish these, we propose a novel methodology based on a fluctuation magnification algorithm. We show that under magnifying perturbations, the eigenvalues associated with real factors exhibit significantly less fluctuation (stabilizing asymptotically) compared to spurious eigenvalues arising from heavy-tailed effects. This differential behavior allows the identification and detection of the true and spurious factors. We develop a formal testing procedure based on this principle and apply it to the problem of accurately selecting the number of common factors in heavy-tailed EFMs. Simulation studies and real data analysis confirm the effectiveness of our approach compared to existing methods, particularly in scenarios with pronounced heavy-tailedness.
Suggested Citation
Jiang Hu & Jiahui Xie & Yangchun Zhang & Wang Zhou, 2025.
"The Spurious Factor Dilemma: Robust Inference in Heavy-Tailed Elliptical Factor Models,"
Papers
2506.05116, arXiv.org.
Handle:
RePEc:arx:papers:2506.05116
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.05116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.