Author
Listed:
- Stephane Hess
- Sander van Cranenburgh
Abstract
Travel behaviour modellers have an increasingly diverse set of models at their disposal, ranging from traditional econometric structures to models from mathematical psychology and data-driven approaches from machine learning. A key question arises as to how well these different models perform in prediction, especially when considering trips of different characteristics from those used in estimation, i.e. out-of-distribution prediction, and whether better predictions can be obtained by combining insights from the different models. Across two case studies, we show that while data-driven approaches excel in predicting mode choice for trips within the distance bands used in estimation, beyond that range, the picture is fuzzy. To leverage the relative advantages of the different model families and capitalise on the notion that multiple `weak' models can result in more robust models, we put forward the use of a model averaging approach that allocates weights to different model families as a function of the \emph{distance} between the characteristics of the trip for which predictions are made, and those used in model estimation. Overall, we see that the model averaging approach gives larger weight to models with stronger behavioural or econometric underpinnings the more we move outside the interval of trip distances covered in estimation. Across both case studies, we show that our model averaging approach obtains improved performance both on the estimation and validation data, and crucially also when predicting mode choices for trips of distances outside the range used in estimation.
Suggested Citation
Stephane Hess & Sander van Cranenburgh, 2025.
"Combine and conquer: model averaging for out-of-distribution forecasting,"
Papers
2506.03693, arXiv.org.
Handle:
RePEc:arx:papers:2506.03693
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.03693. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.