IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.18560.html
   My bibliography  Save this paper

Simultaneous Inference Bands for Autocorrelations

Author

Listed:
  • Uwe Hassler
  • Marc-Oliver Pohle
  • Tanja Zahn

Abstract

Sample autocorrelograms typically come with significance bands (non-rejection regions) for the null hypothesis of temporal independence. These bands have two shortcomings. First, they build on pointwise intervals and suffer from joint undercoverage (overrejection) under the null hypothesis. Second, if this null is clearly violated one would rather prefer to see confidence bands to quantify estimation uncertainty. We propose and discuss both simultaneous significance bands and simultaneous confidence bands for time series and series of regression residuals. They are as easy to construct as their pointwise counterparts and at the same time provide an intuitive and visual quantification of sampling uncertainty as well as valid statistical inference. For regression residuals, we show that for static regressions the asymptotic variances underlying the construction of the bands are as for observed time series and for dynamic regressions (with lagged endogenous regressors) we show how they need to be adjusted. We study theoretical properties of simultaneous significance bands and two types of simultaneous confidence bands (sup-t and Bonferroni) and analyse their finite-sample performance in a simulation study. Finally, we illustrate the use of the bands in an application to monthly US inflation and residuals from Phillips curve regressions.

Suggested Citation

  • Uwe Hassler & Marc-Oliver Pohle & Tanja Zahn, 2025. "Simultaneous Inference Bands for Autocorrelations," Papers 2503.18560, arXiv.org.
  • Handle: RePEc:arx:papers:2503.18560
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.18560
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    3. Dalla, Violetta & Giraitis, Liudas & Phillips, Peter C. B., 2022. "Robust Tests For White Noise And Cross-Correlation," Econometric Theory, Cambridge University Press, vol. 38(5), pages 913-941, October.
    4. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    5. Laurence Ball & Sandeep Mazumder, 2019. "A Phillips Curve with Anchored Expectations and Short‐Term Unemployment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 111-137, February.
    6. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    7. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, December.
    8. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    9. Christian Francq & Jean‐Michel Zakoïan, 2009. "Bartlett's formula for a general class of nonlinear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 449-465, July.
    10. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    11. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    12. Smith, Simon & Timmermann, Allan & Wright, Jonathan, 2023. "Breaks in the Phillips Curve: Evidence from Panel Data," CEPR Discussion Papers 18033, C.E.P.R. Discussion Papers.
    13. Cavazos-Cadena, Rolando, 1994. "A simple form of Bartlett's formula for autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 221-231, February.
    14. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    15. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    16. Blanchard, Oliver & Cerutti, Eugenio & SUmmers, Lawrence, 2015. "Inflation and Activity - Two Explorations and Their Monetary Policy Implications," Working Paper Series 15-070, Harvard University, John F. Kennedy School of Government.
    17. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    19. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    20. Cumby, Robert E & Huizinga, John, 1992. "Testing the Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions," Econometrica, Econometric Society, vol. 60(1), pages 185-195, January.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. Olivier Blanchard, 2016. "The Phillips Curve: Back to the '60s?," American Economic Review, American Economic Association, vol. 106(5), pages 31-34, May.
    23. Inoue, Atsushi & Jordà , Òscar & Kuersteiner, Guido, 2023. "Significance Bands for Local Projections," CEPR Discussion Papers 18271, C.E.P.R. Discussion Papers.
    24. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    25. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    26. Melard, Guy & Roy, Roch, 1987. "On confidence intervals and tests for autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 5(1), pages 31-44.
    27. Stock, James H, 1987. "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," Econometrica, Econometric Society, vol. 55(5), pages 1035-1056, September.
    28. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2019. "Simultaneous confidence bands: Theory, implementation, and an application to SVARs," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 1-17, January.
    29. Guy Melard & Roch Roy, 1987. "On confidence intervals and tests for autocorrelations," ULB Institutional Repository 2013/13702, ULB -- Universite Libre de Bruxelles.
    30. Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2002. "Testing For Zero Autocorrelation In The Presence Of Statistical Dependence," Econometric Theory, Cambridge University Press, vol. 18(3), pages 730-743, June.
    31. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-421, May.
    32. Robert J. Gordon, 2013. "The Phillips Curve is Alive and Well: Inflation and the NAIRU During the Slow Recovery," NBER Working Papers 19390, National Bureau of Economic Research, Inc.
    33. Stephen J. Taylor, 1984. "Estimating the Variances of Autocorrelations Calculated from Financial Time Series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(3), pages 300-308, November.
    34. Shin, Yongcheol, 1994. "A Residual-Based Test of the Null of Cointegration Against the Alternative of No Cointegration," Econometric Theory, Cambridge University Press, vol. 10(1), pages 91-115, March.
    35. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    36. Proschan, Michael A. & Shaw, Pamela A., 2011. "Asymptotics of Bonferroni for dependent normal test statistics," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 739-748, July.
    37. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    38. Giraitis, Liudas & Li, Yufei & Phillips, Peter C.B., 2024. "Reprint of: Robust inference on correlation under general heterogeneity," Journal of Econometrics, Elsevier, vol. 244(2).
    39. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    2. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
    3. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    4. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    5. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    6. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    7. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    8. Granziera, Eleonora & Sekhposyan, Tatevik, 2019. "Predicting relative forecasting performance: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
    9. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, December.
    10. Vicente Esteve, 2004. "Política fiscal y productividad del trabajo en la economía española: un análisis de series temporales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 3-29, June.
    11. Franz Xaver Zobl & Martin Ertl, 2021. "The Condemned Live Longer – New Evidence of the New Keynesian Phillips Curve in Central and Eastern Europe," Open Economies Review, Springer, vol. 32(4), pages 671-699, September.
    12. Aparicio, Felipe M. & Escribano, Álvaro & Mármol, Francesc, 1999. "A new instrumental variable approach for estimation and testing in fractional cointegrating regressions," DES - Working Papers. Statistics and Econometrics. WS 6298, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Sune Karlsson & Pär Österholm, 2023. "Is the US Phillips curve stable? Evidence from Bayesian vector autoregressions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 287-314, January.
    14. Boswijk, H. Peter, 1995. "Efficient inference on cointegration parameters in structural error correction models," Journal of Econometrics, Elsevier, vol. 69(1), pages 133-158, September.
    15. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    16. Vasco Gabriel, 2003. "Tests for the Null Hypothesis of Cointegration: A Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 411-435.
    17. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," Money Macro and Finance (MMF) Research Group Conference 2005 18, Money Macro and Finance Research Group.
    18. Martin Wagner & Dominik Wied, 2017. "Consistent Monitoring of Cointegrating Relationships: The US Housing Market and the Subprime Crisis," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 960-980, November.
    19. Adriana Cornea‐Madeira & João Madeira, 2022. "Econometric Analysis of Switching Expectations in UK Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(3), pages 651-673, June.
    20. G. Everaert, 2007. "Estimating Long-Run Relationships between Observed Integrated Variables by Unobserved Component Methods," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/452, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.18560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.