IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.16532.html
   My bibliography  Save this paper

Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network

Author

Listed:
  • Min Hu
  • Zhizhong Tan
  • Bin Liu
  • Guosheng Yin

Abstract

This study aims to address the challenges of futures price prediction in high-frequency trading (HFT) by proposing a continuous learning factor predictor based on graph neural networks. The model integrates multi-factor pricing theories with real-time market dynamics, effectively bypassing the limitations of existing methods that lack financial theory guidance and ignore various trend signals and their interactions. We propose three heterogeneous tasks, including price moving average regression, price gap regression and change-point detection to trace the short-, intermediate-, and long-term trend factors present in the data. In addition, this study also considers the cross-sectional correlation characteristics of future contracts, where prices of different futures often show strong dynamic correlations. Each variable (future contract) depends not only on its historical values (temporal) but also on the observation of other variables (cross-sectional). To capture these dynamic relationships more accurately, we resort to the spatio-temporal graph neural network (STGNN) to enhance the predictive power of the model. The model employs a continuous learning strategy to simultaneously consider these tasks (factors). Additionally, due to the heterogeneity of the tasks, we propose to calculate parameter importance with mutual information between original observations and the extracted features to mitigate the catastrophic forgetting (CF) problem. Empirical tests on 49 commodity futures in China's futures market demonstrate that the proposed model outperforms other state-of-the-art models in terms of prediction accuracy. Not only does this research promote the integration of financial theory and deep learning, but it also provides a scientific basis for actual trading decisions.

Suggested Citation

  • Min Hu & Zhizhong Tan & Bin Liu & Guosheng Yin, 2023. "Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network," Papers 2303.16532, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2303.16532
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.16532
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Suleyman Basak & Anna Pavlova, 2016. "A Model of Financialization of Commodities," Journal of Finance, American Finance Association, vol. 71(4), pages 1511-1556, August.
    3. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    4. Racine Ly & Fousseini Traore & Khadim Dia, 2021. "Forecasting Commodity Prices Using Long Short-Term Memory Neural Networks," Papers 2101.03087, arXiv.org, revised Jan 2021.
    5. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pazouki, Azadeh & Zhu, Xiaoxian, 2022. "The dynamic impact among oil dependence volatility, the quality of political institutions, and government spending," Energy Economics, Elsevier, vol. 115(C).
    2. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    3. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    4. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    5. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    6. Kritika Mathur & Nidhi Kaicker & Raghav Gaiha & Katsushi S. Imai & Ganesh Thapa, 2014. "Financialisation of food commodity markets, price surge and volatility: new evidence," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 7, pages 149-176, Edward Elgar Publishing.
    7. Zhou, Bo & Zhang, Ying & Zhou, Peng, 2021. "Multilateral political effects on outbound tourism," Annals of Tourism Research, Elsevier, vol. 88(C).
    8. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Ornelas, José Renato Haas & Mauad, Roberto Baltieri, 2019. "Volatility risk premia and future commodity returns," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 341-360.
    10. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    11. Sercan Demiralay & Selcuk Bayraci & H. Gaye Gencer, 2019. "Time-varying diversification benefits of commodity futures," Empirical Economics, Springer, vol. 56(6), pages 1823-1853, June.
    12. Erdal Demirhan & Banu Demirhan, 2015. "The Dynamic Effect of ExchangeRate Volatility on Turkish Exports: Parsimonious Error-Correction Model Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(4), pages 429-451, September.
    13. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    14. Hanabusa, Kunihiro, 2012. "The effect of 107th OPEC Ordinary Meeting on oil prices and economic performances in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1666-1672.
    15. Reza Bradrania & Davood Pirayesh Neghab & Mojtaba Shafizadeh, 2022. "State-dependent stock selection in index tracking: a machine learning approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 1-28, March.
    16. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, December.
    17. Nicholas Apergis & Stephen M. Miller, 2007. "Total Factor Productivity and Monetary Policy: Evidence from Conditional Volatility," International Finance, Wiley Blackwell, vol. 10(2), pages 131-152, July.
    18. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    19. Park, Beum-Jo, 2022. "The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market," Research in International Business and Finance, Elsevier, vol. 59(C).
    20. Jin, Xiaoye & An, Ximeng, 2016. "Global financial crisis and emerging stock market contagion: A volatility impulse response function approach," Research in International Business and Finance, Elsevier, vol. 36(C), pages 179-195.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.16532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.