IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.01732.html
   My bibliography  Save this paper

Tail Risk of Electricity Futures

Author

Listed:
  • Juan Ignacio Pe~na
  • Rosa Rodriguez
  • Silvia Mayoral

Abstract

This paper compares the in-sample and out-of-sample performance of several models for computing the tail risk of one-month and one-year electricity futures contracts traded in the NordPool, French, German, and Spanish markets in 2008-2017. As measures of tail risk, we use the one-day-ahead Value-at-Risk (VaR) and the Expected Shortfall (ES). With VaR, the AR (1)-GARCH (1,1) model with Student-t distribution is the best-performing specification with 88% cases in which the Fisher test accepts the model, with a success rate of 94% in the left tail and of 81% in the right tail. The model passes the test of model adequacy in the 100% of the cases in the NordPool and German markets, but only in the 88% and 63% of the cases in the Spanish and French markets. With ES, this model passes the test of model adequacy in 100% of cases in all markets. Historical Simulation and Quantile Regression-based approaches misestimate tail risks. The right-hand tail of the returns is more difficult to model than the left-hand tail and therefore financial regulators and the administrators of futures markets should take these results into account when setting additional regulatory capital requirements and margin account regulations to short positions.

Suggested Citation

  • Juan Ignacio Pe~na & Rosa Rodriguez & Silvia Mayoral, 2022. "Tail Risk of Electricity Futures," Papers 2202.01732, arXiv.org.
  • Handle: RePEc:arx:papers:2202.01732
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.01732
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    2. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    3. J. Arnold Quinn & James D. Reitzes & Adam C. Schumacher, 2005. "Forward and Spot Prices in Electricity and Gas Markets," Topics in Regulatory Economics and Policy, in: Michel A. Crew & Michael A. Crew & Menahem Spiegel (ed.), Obtaining the Best from Regulation and Competition, chapter 0, pages 109-134, Springer.
    4. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    5. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    6. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    7. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    8. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    9. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    10. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    11. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    12. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.
    13. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    14. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    15. Vehvilainen, Iivo & Keppo, Jussi, 2003. "Managing electricity market price risk," European Journal of Operational Research, Elsevier, vol. 145(1), pages 136-147, February.
    16. Sanda, Gaute Egeland & Olsen, Eirik Tandberg & Fleten, Stein-Erik, 2013. "Selective hedging in hydro-based electricity companies," Energy Economics, Elsevier, vol. 40(C), pages 326-338.
    17. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    18. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, January.
    19. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    20. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    21. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    22. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    23. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    24. Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
    25. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    26. González-Pedraz, Carlos & Moreno, Manuel & Peña, Juan Ignacio, 2014. "Tail risk in energy portfolios," Energy Economics, Elsevier, vol. 46(C), pages 422-434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    6. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
    7. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    8. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    9. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    10. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    11. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    12. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    13. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    14. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    15. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
    17. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    18. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    19. Ning Zhang & Yujing Gong & Xiaohan Xue, 2023. "Less disagreement, better forecasts: Adjusted risk measures in the energy futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1332-1372, October.
    20. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.01732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.