IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.01219.html

Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests

Author

Listed:
  • Zhaowei She
  • Zilong Wang
  • Turgay Ayer
  • Asmae Toumi
  • Jagpreet Chhatwal

Abstract

Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.

Suggested Citation

  • Zhaowei She & Zilong Wang & Turgay Ayer & Asmae Toumi & Jagpreet Chhatwal, 2020. "Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests," Papers 2011.01219, arXiv.org, revised Nov 2020.
  • Handle: RePEc:arx:papers:2011.01219
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.01219
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luc Behaghel & Clément de Chaisemartin & Marc Gurgand, 2017. "Ready for Boarding? The Effects of a Boarding School for Disadvantaged Students," American Economic Journal: Applied Economics, American Economic Association, vol. 9(1), pages 140-164, January.
    2. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    3. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Guillermo Cruces & Sebastian Galiani, 2003. "Generalizing the Causal Effect of Fertility on Female Labor Supply," Labor and Demography 0310002, University Library of Munich, Germany.
    5. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    6. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    7. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    8. Elizabeth O. Ananat & Guy Michaels, 2008. "The Effect of Marital Breakup on the Income Distribution of Women with Children," Journal of Human Resources, University of Wisconsin Press, vol. 43(3), pages 611-629.
    9. Ygué Patrice Adegbola1 & Baudelaire YF Kouton Bognon & Pélagie M Hessavi, 2020. "Economic Impact Assessment of Improved Maize Adoption on Poverty: Case Study of Four West African Countries," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 134-141, November.
    10. Michal Kolesár, 2013. "Estimation in an Instrumental Variables Model With Treatment Effect Heterogeneity," Working Papers 2013-2, Princeton University. Economics Department..
    11. Cruces, Guillermo & Galiani, Sebastian, 2007. "Fertility and female labor supply in Latin America: New causal evidence," Labour Economics, Elsevier, vol. 14(3), pages 565-573, June.
    12. Joshua Goodman & Oded Gurantz & Jonathan Smith, 2020. "Take Two! SAT Retaking and College Enrollment Gaps," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 115-158, May.
    13. Joshua D. Angrist & Parag A. Pathak & Christopher R. Walters, 2013. "Explaining Charter School Effectiveness," American Economic Journal: Applied Economics, American Economic Association, vol. 5(4), pages 1-27, October.
    14. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    15. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    16. Gracious M. Diiro & Abdoul G. Sam & David Kraybill, 2017. "Heterogeneous Effects of Maternal Labor Market Participation on the Nutritional Status of Children: Empirical Evidence from Rural India," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 609-632, September.
    17. Heidi Allen & Katherine Baicker, 2021. "The Effect of Medicaid on Care and Outcomes for Chronic Conditions: Evidence from the Oregon Health Insurance Experiment," NBER Working Papers 29373, National Bureau of Economic Research, Inc.
    18. Meissner, Philip & Wulf, Torsten, 2014. "Antecendents and effects of decision comprehensiveness: The role of decision quality and perceived uncertainty," European Management Journal, Elsevier, vol. 32(4), pages 625-635.
    19. de Luna, Xavier & Johansson, Per, 2012. "Testing for Nonparametric Identification of Causal Effects in the Presence of a Quasi-Instrument," IZA Discussion Papers 6692, Institute of Labor Economics (IZA).
    20. Hsu, De Fen & Morrill, Melinda & Pathak, Aditi, 2024. "Health and retirement: Heterogeneity in the responsiveness to pension incentives," Economics Letters, Elsevier, vol. 238(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.01219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.