IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.01428.html
   My bibliography  Save this paper

Trading Cointegrated Assets with Price Impact

Author

Listed:
  • Alvaro Cartea
  • Luhui Gan
  • Sebastian Jaimungal

Abstract

Executing a basket of co-integrated assets is an important task facing investors. Here, we show how to do this accounting for the informational advantage gained from assets within and outside the basket, as well as for the permanent price impact of market orders (MOs) from all market participants, and the temporary impact that the agent's MOs have on prices. The execution problem is posed as an optimal stochastic control problem and we demonstrate that, under some mild conditions, the value function admits a closed-form solution, and prove a verification theorem. Furthermore, we use data of five stocks traded in the Nasdaq exchange to estimate the model parameters and use simulations to illustrate the performance of the strategy. As an example, the agent liquidates a portfolio consisting of shares in Intel Corporation (INTC) and Market Vectors Semiconductor ETF (SMH). We show that including the information provided by three additional assets, FARO Technologies (FARO), NetApp (NTAP) and Oracle Corporation (ORCL), considerably improves the strategy's performance; for the portfolio we execute, it outperforms the multi-asset version of Almgren-Chriss by approximately 4 to 4.5 basis points.

Suggested Citation

  • Alvaro Cartea & Luhui Gan & Sebastian Jaimungal, 2018. "Trading Cointegrated Assets with Price Impact," Papers 1807.01428, arXiv.org.
  • Handle: RePEc:arx:papers:1807.01428
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.01428
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    2. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    3. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    4. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    5. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    6. Alexander Schied, 2012. "Robust Strategies for Optimal Order Execution in the Almgren-Chriss Framework," Papers 1204.2717, arXiv.org, revised May 2013.
    7. Lei, Yaoting & Xu, Jing, 2015. "Costly arbitrage through pairs trading," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 1-19.
    8. Tourin, Agnès & Yan, Raphael, 2013. "Dynamic pairs trading using the stochastic control approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1972-1981.
    9. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    10. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    11. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    12. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    13. Alexander Schied, 2013. "Robust Strategies for Optimal Order Execution in the Almgren--Chriss Framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(3), pages 264-286, July.
    14. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    15. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    16. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Guijarro-Ordonez, 2019. "High-dimensional statistical arbitrage with factor models and stochastic control," Papers 1901.09309, arXiv.org, revised Dec 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game of Portfolio Trading and Its Consequences On Perceived Correlations," Papers 1902.09606, arXiv.org.
    4. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    5. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    6. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    7. Álvaro Cartea & Sebastian Jaimungal & Jason Ricci, 2018. "Trading Strategies Within The Edges Of No-Arbitrage," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-37, May.
    8. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game Of Portfolio Trading And Its Consequences On Perceived Correlations," Working Papers hal-02003143, HAL.
    9. Etienne Chevalier & Vathana Ly Vath & Simone Scotti & Alexandre Roch, 2016. "Optimal Execution Cost For Liquidation Through A Limit Order Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-26, February.
    10. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    11. Bastien Baldacci & Jerome Benveniste, 2020. "A note on Almgren-Chriss optimal execution problem with geometric Brownian motion," Papers 2006.11426, arXiv.org, revised Jun 2020.
    12. Charles-Albert Lehalle & Eyal Neuman, 2017. "Incorporating Signals into Optimal Trading," Papers 1704.00847, arXiv.org, revised Jun 2018.
    13. Weston Barger & Matthew Lorig, 2019. "Optimal Liquidation Under Stochastic Price Impact," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-28, March.
    14. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    15. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
    16. Rossella Agliardi & Ramazan Gençay, 2017. "Optimal Trading Strategies With Limit Orders," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-16, February.
    17. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    18. repec:dau:papers:123456789/7391 is not listed on IDEAS
    19. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    20. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2020.
    21. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.01428. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.