IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Robust Strategies for Optimal Order Execution in the Almgren-Chriss Framework

Listed author(s):
  • Alexander Schied
Registered author(s):

    Assuming geometric Brownian motion as unaffected price process $S^0$, Gatheral & Schied (2011) derived a strategy for optimal order execution that reacts in a sensible manner on market changes but can still be computed in closed form. Here we will investigate the robustness of this strategy with respect to misspecification of the law of $S^0$. We prove the surprising result that the strategy remains optimal whenever $S^0$ is a square-integrable martingale. We then analyze the optimization criterion of Gatheral & Schied (2011) in the case in which $S^0$ is any square-integrable semimartingale and we give a closed-form solution to this problem. As a corollary, we find an explicit solution to the problem of minimizing the expected liquidation costs when the unaffected price process is a square-integrable semimartingale. The solutions to our problems are found by stochastically solving a finite-fuel control problem without assumptions of Markovianity.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1204.2717.

    in new window

    Date of creation: Apr 2012
    Date of revision: May 2013
    Handle: RePEc:arx:papers:1204.2717
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.2717. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.