IDEAS home Printed from
   My bibliography  Save this paper

Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints


  • Huiwen Yan
  • Gechun Liang
  • Zhou Yang


This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with optimal stopping time in the case of American option) of forward-backward stochastic differential equations. By means of backward stochastic differential equation and partial differential equation methods, we show that both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates. The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty disappears. Finally, two applications to European option and American option are discussed.

Suggested Citation

  • Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969,
  • Handle: RePEc:arx:papers:1503.08969

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Becherer, Dirk, 2003. "Rational hedging and valuation of integrated risks under constant absolute risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 1-28, August.
    2. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    3. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    4. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448,
    5. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    6. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    7. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    8. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    9. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    10. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    11. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    12. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489,
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gechun Liang & Zhou Yang, 2018. "Analysis of the optimal exercise boundary of American put options with delivery lags," Papers 1805.02909,, revised Dec 2020.
    2. Zhou Yang & Hyeng Keun Koo, 2018. "Optimal Consumption and Portfolio Selection with Early Retirement Option," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1378-1404, November.
    3. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032,, revised May 2023.
    4. Wang, Ling & Chen, Kexin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Optimal expansion of business opportunity," European Journal of Operational Research, Elsevier, vol. 309(1), pages 432-445.
    5. Ling Wang & Kexin Chen & Mei Choi Chiu & Hoi Ying Wong, 2021. "Optimal Expansion of Business Opportunity," Papers 2112.06706,
    6. Guohui Guan & Qitao Huang & Zongxia Liang & Fengyi Yuan, 2020. "Retirement decision with addictive habit persistence in a jump diffusion market," Papers 2011.10166,, revised Feb 2024.
    7. Zhou Yang & Gechun Liang & Chao Zhou, 2017. "Constrained portfolio-consumption strategies with uncertain parameters and borrowing costs," Papers 1711.02939,, revised Dec 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    2. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.
    3. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    4. Carole Bernard & Shaolin Ji & Weidong Tian, 2013. "An optimal insurance design problem under Knightian uncertainty," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 99-124, November.
    5. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317,, revised Oct 2020.
    6. Lazrak, Ali & Zapatero, Fernando, 2004. "Efficient consumption set under recursive utility and unknown beliefs," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 207-226, February.
    7. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    8. Kyoung Jin Choi & Hyeng Keun Koo & Do Young Kwak, 2004. "Optimal Stopping of Active Portfolio Management," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 93-126, May.
    9. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    10. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    11. Zhang, Huanjun & Yan, Zhiguo, 2020. "Backward stochastic optimal control with mixed deterministic controller and random controller and its applications in linear-quadratic control," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    12. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    13. Epstein, Larry G. & Miao, Jianjun, 2003. "A two-person dynamic equilibrium under ambiguity," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1253-1288, May.
    14. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    15. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    16. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    17. Nobuhiro Nakamura, 2004. "Numerical Approach to Asset Pricing Models with Stochastic Differential Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 267-300, September.
    18. Martin Dumav, 2021. "Moral Hazard, Dynamic Incentives, and Ambiguous Perceptions," Papers 2110.15229,
    19. Shigeta, Yuki, 2022. "Quasi-hyperbolic discounting under recursive utility and consumption–investment decisions," Journal of Economic Theory, Elsevier, vol. 204(C).
    20. Patrick Beissner & Qian Lin & Frank Riedel, 2020. "Dynamically consistent alpha‐maxmin expected utility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1073-1102, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.08969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.