IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i1p107-134.html
   My bibliography  Save this article

Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion

Author

Listed:
  • Hu, Mingshang
  • Ji, Shaolin

Abstract

In this paper, we study a stochastic recursive optimal control problem in which the cost functional is described by the solution of a backward stochastic differential equation driven by G-Brownian motion. Under standard assumptions, we establish the dynamic programming principle and the related fully nonlinear HJB equation in the framework of G-expectation. Finally, we show that the value function is the viscosity solution of the obtained HJB equation.

Suggested Citation

  • Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:1:p:107-134
    DOI: 10.1016/j.spa.2016.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300795
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Bruno Bouchard & Ludovic Moreau & Marcel Nutz, 2012. "Stochastic target games with controlled loss," Papers 1206.6325, arXiv.org, revised Apr 2014.
    3. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    4. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    5. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    6. Revaz Tevzadze & Teimuraz Toronjadze & Tamaz Uzunashvili, 2013. "Robust utility maximization for a diffusion market model with misspecified coefficients," Finance and Stochastics, Springer, vol. 17(3), pages 535-563, July.
    7. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    8. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    9. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    10. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    11. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    12. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:1:p:107-134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.