IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i4p1378-1404.html
   My bibliography  Save this article

Optimal Consumption and Portfolio Selection with Early Retirement Option

Author

Listed:
  • Zhou Yang

    (School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China)

  • Hyeng Keun Koo

    (Department of Financial Engineering, Ajou University, Yeongtong-gu, Suwon, 16499, Korea)

Abstract

In this paper we propose an approach to investigate a model of consumption and investment with a mandatory retirement date and early retirement option; we analyze properties of the optimal strategy and thereby contribute to understanding the interaction between retirement, consumption, and portfolio decisions in the presence of both the important features of retirement. In particular, we provide a characterization of the threshold of wealth as a function of time, and we show that it is strictly decreasing near the mandatory retirement date. The threshold is similar to the early exercise boundary of an American option in the sense that if the agent’s wealth is above or equal to the threshold level, then the agent immediately retires. We also provide comparative static analysis.

Suggested Citation

  • Zhou Yang & Hyeng Keun Koo, 2018. "Optimal Consumption and Portfolio Selection with Early Retirement Option," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1378-1404, November.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1378-1404
    DOI: 10.1287/moor.2017.0909
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0909
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969, arXiv.org.
    2. Kyoung Jin Choi & Gyoocheol Shim, 2006. "Disutility, Optimal Retirement, And Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 443-467, April.
    3. Dybvig, Philip H. & Liu, Hong, 2010. "Lifetime consumption and investment: Retirement and constrained borrowing," Journal of Economic Theory, Elsevier, vol. 145(3), pages 885-907, May.
    4. Farhi, Emmanuel & Panageas, Stavros, 2007. "Saving and investing for early retirement: A theoretical analysis," Journal of Financial Economics, Elsevier, vol. 83(1), pages 87-121, January.
    5. Watson, John G. & Scott, Jason S., 2014. "Ratchet consumption over finite and infinite planning horizons," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 84-96.
    6. Hong Liu & Mark Loewenstein, 2002. "Optimal Portfolio Selection with Transaction Costs and Finite Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 805-835.
    7. Bakshi, Gurdip S & Chen, Zhiwu, 1994. "Baby Boom, Population Aging, and Capital Markets," The Journal of Business, University of Chicago Press, vol. 67(2), pages 165-202, April.
    8. Kyoung Jin Choi & Gyoocheol Shim & Yong Hyun Shin, 2008. "Optimal Portfolio, Consumption‐Leisure And Retirement Choice Problem With Ces Utility," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 445-472, July.
    9. Ioannis Karatzas & John P. Lehoczky & Suresh P. Sethi & Steven E. Shreve, 1986. "Explicit Solution of a General Consumption/Investment Problem," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 261-294, May.
    10. Touzi, N. & Vieille, N., 1999. "Continuous-Time Dynkin Games with Mixed Strategies," Papiers d'Economie Mathématique et Applications 1999.112, Université Panthéon-Sorbonne (Paris 1).
    11. Philip H. Dybvig & Hong Liu, 2011. "Verification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 620-635, November.
    12. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    13. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Ho-Seok & Lim, Byung Hwa, 2023. "Personal bankruptcy and post-bankruptcy liquidity constraint," Journal of Banking & Finance, Elsevier, vol. 152(C).
    2. Jeon, Junkee & Park, Kyunghyun, 2020. "Dynamic asset allocation with consumption ratcheting post retirement," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    3. Bäuerle Nicole & Chen An, 2019. "Optimal retirement planning under partial information," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 37-55, December.
    4. Chen, An & Hentschel, Felix & Steffensen, Mogens, 2021. "On retirement time decision making," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 107-129.
    5. Junkee Jeon & Hyeng Keun Koo & Yong Hyun Shin & Zhou Yang, 2021. "An Integral Equation Representation for Optimal Retirement Strategies in Portfolio Selection Problem," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 885-914, October.
    6. Junkee Jeon & Hyeng Keun Koo & Minsuk Kwak, 2024. "Human capital and portfolio choice: borrowing constraint and reversible retirement," Mathematics and Financial Economics, Springer, volume 18, number 5, February.
    7. An Chen & Giorgio Ferrari & Shihao Zhu, 2023. "Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning," Papers 2312.02943, arXiv.org.
    8. Park, Seyoung, 2015. "A generalization of Yaari’s result on annuitization with optimal retirement," Economics Letters, Elsevier, vol. 137(C), pages 17-20.
    9. Giorgio Ferrari & Shihao Zhu, 2023. "Optimal Retirement Choice under Age-dependent Force of Mortality," Papers 2311.12169, arXiv.org.
    10. Choi, Kyoung Jin & Jeon, Junkee & Koo, Hyeng Keun, 2022. "Intertemporal preference with loss aversion: Consumption and risk-attitude," Journal of Economic Theory, Elsevier, vol. 200(C).
    11. Chae, Jiwon & Jang, Bong-Gyu & Park, Seyoung, 2023. "Analytic approach for models of optimal retirement with disability risk," Mathematical Social Sciences, Elsevier, vol. 126(C), pages 68-75.
    12. Jang, Bong-Gyu & Park, Seyoung & Zhao, Huainan, 2020. "Optimal retirement with borrowing constraints and forced unemployment risk," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 25-39.
    13. Kyoung Jin Choi & Gyoocheol Shim & Yong Hyun Shin, 2008. "Optimal Portfolio, Consumption‐Leisure And Retirement Choice Problem With Ces Utility," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 445-472, July.
    14. Ferrari, Giorgio & Zhu, Shihao, 2023. "Optimal Retirement Choice under Age-dependent Force of Mortality," Center for Mathematical Economics Working Papers 683, Center for Mathematical Economics, Bielefeld University.
    15. Chen, An & Ferrari, Giorgio & Zhu, Shihao, 2023. "Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning," Center for Mathematical Economics Working Papers 684, Center for Mathematical Economics, Bielefeld University.
    16. Park, Seyoung, 2020. "Verification theorems for models of optimal consumption and investment with annuitization," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 36-44.
    17. Guohui Guan & Qitao Huang & Zongxia Liang & Fengyi Yuan, 2020. "Retirement decision with addictive habit persistence in a jump diffusion market," Papers 2011.10166, arXiv.org, revised Feb 2024.
    18. Jeon, Junkee & Park, Kyunghyun, 2023. "Optimal job switching and retirement decision," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    19. Jang, Bong-Gyu & Lee, Ho-Seok, 2016. "Retirement with risk aversion change and borrowing constraints," Finance Research Letters, Elsevier, vol. 16(C), pages 112-124.
    20. Ding, Guodong & Marazzina, Daniele, 2022. "The impact of liquidity constraints and cashflows on the optimal retirement problem," Finance Research Letters, Elsevier, vol. 49(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1378-1404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.