IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i1d10.1007_s11009-023-09996-z.html
   My bibliography  Save this article

Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation Approach

Author

Listed:
  • Alexandre Roch

    (University of Quebec at Montreal)

Abstract

We present a learning algorithm based on simulation and neural networks to solve a stochastic optimal control problem with a large state space using dynamic programming. The problem consists in liquidating a given number of shares of a stock through a limit order book (LOB). The state space includes prices and quantities at each level in the LOB. The objective is to maximize the expected liquidation proceeds. Shares are sold by market orders matching the current limit orders in the LOB and have an impact on the future evolution of the LOB. The optimal strategy is obtained using a hybrid form of performance and value iteration procedures based on neural networks. The probability distribution of the LOB is estimated by a deep learning classification task. The model is tested on 12 stocks traded through the NYSE Arcabook, and a numerical implementation shows that the model outperforms the most common optimal liquidation models in the literature by a significant amount.

Suggested Citation

  • Alexandre Roch, 2023. "Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09996-z
    DOI: 10.1007/s11009-023-09996-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-09996-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-09996-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    4. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    5. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    6. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    7. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    8. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    9. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    10. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
    11. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    12. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    13. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    14. Rene Carmona & Michael Ludkovski, 2008. "Pricing Asset Scheduling Flexibility using Optimal Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 405-447.
    15. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    16. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    17. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    18. repec:dau:papers:123456789/7391 is not listed on IDEAS
    19. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    20. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    21. Alexandre Carbonneau & Frédéric Godin, 2021. "Equal risk pricing of derivatives with deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 21(4), pages 593-608, April.
    22. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
    23. Achref Bachouch & Côme Huré & Nicolas Langrené & Huyên Pham, 2022. "Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 143-178, March.
    24. repec:dau:papers:123456789/12195 is not listed on IDEAS
    25. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    26. Arne Løkka & Junwei Xu, 2020. "Optimal Liquidation Trajectories For The Almgren–Chriss Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(07), pages 1-35, November.
    27. Denis Belomestny & Stefan Hafner & Mikhail Urusov, 2016. "Regression-based complexity reduction of the nested Monte Carlo methods," Papers 1611.06344, arXiv.org, revised Jun 2018.
    28. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    29. Etienne Chevalier & Vathana Ly Vath & Simone Scotti & Alexandre Roch, 2016. "Optimal Execution Cost For Liquidation Through A Limit Order Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-26, February.
    30. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    31. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    32. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-wen & Wong, Tak Kwong & Zhu, Dong-Mei, 2024. "Viscosity solution for optimal liquidation problems with randomly-terminated horizon," Finance Research Letters, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    6. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    7. Alvaro Cartea & Luhui Gan & Sebastian Jaimungal, 2018. "Trading Cointegrated Assets with Price Impact," Papers 1807.01428, arXiv.org.
    8. Etienne Chevalier & Vathana Ly Vath & Simone Scotti & Alexandre Roch, 2016. "Optimal Execution Cost For Liquidation Through A Limit Order Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-26, February.
    9. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    10. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    11. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    12. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    13. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    14. William Lefebvre & Gr'egoire Loeper & Huy^en Pham, 2022. "Differential learning methods for solving fully nonlinear PDEs," Papers 2205.09815, arXiv.org.
    15. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    16. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    17. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    18. Rama Cont & Arseniy Kukanov, 2012. "Optimal order placement in limit order markets," Papers 1210.1625, arXiv.org, revised Nov 2014.
    19. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    20. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09996-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.