IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.05663.html
   My bibliography  Save this paper

Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model

Author

Listed:
  • Spencer Wheatley
  • Didier Sornette
  • Tobias Huber
  • Max Reppen
  • Robert N. Gantner

Abstract

We develop a strong diagnostic for bubbles and crashes in bitcoin, by analyzing the coincidence (and its absence) of fundamental and technical indicators. Using a generalized Metcalfe's law based on network properties, a fundamental value is quantified and shown to be heavily exceeded, on at least four occasions, by bubbles that grow and burst. In these bubbles, we detect a universal super-exponential unsustainable growth. We model this universal pattern with the Log-Periodic Power Law Singularity (LPPLS) model, which parsimoniously captures diverse positive feedback phenomena, such as herding and imitation. The LPPLS model is shown to provide an ex-ante warning of market instabilities, quantifying a high crash hazard and probabilistic bracket of the crash time consistent with the actual corrections; although, as always, the precise time and trigger (which straw breaks the camel's back) being exogenous and unpredictable. Looking forward, our analysis identifies a substantial but not unprecedented overvaluation in the price of bitcoin, suggesting many months of volatile sideways bitcoin prices ahead (from the time of writing, March 2018).

Suggested Citation

  • Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Papers 1803.05663, arXiv.org.
  • Handle: RePEc:arx:papers:1803.05663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.05663
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    2. Didier Sornette & Ryan Woodard, & Wanfeng Yan & Wei-Xing Zhou, "undated". "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette bubble Model," Working Papers ETH-RC-11-004, ETH Zurich, Chair of Systems Design.
    3. Z. Forr'o & P. Cauwels & D. Sornette, "undated". "When games meet reality: is Zynga overvalued?," Working Papers ETH-RC-12-003, ETH Zurich, Chair of Systems Design.
    4. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    5. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    6. Zal'an Forr'o & Peter Cauwels & Didier Sornette, 2012. "When games meet reality: is Zynga overvalued?," Papers 1204.0350, arXiv.org, revised May 2012.
    7. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    8. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    9. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    10. A. Johansen & D. Sornette, 1998. "Evidence of Discrete Scale Invariance in DLA and Time-to-Failure by Canonical Averaging," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 433-447.
    11. Sornette, Didier & Cauwels, Peter, 2015. "Financial Bubbles: Mechanisms and Diagnostics," Review of Behavioral Economics, now publishers, vol. 2(3), pages 279-305, October.
    12. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    13. Peter Cauwels, Didier Sornette, "undated". "Quis pendit ipsa pretia: facebook valuation and diagnostic of a bubble based on nonlinear demographic dynamics," Working Papers ETH-RC-11-007, ETH Zurich, Chair of Systems Design.
    14. Susanne von der Becke & Didier Sornette, 2017. "Should Banks Be Banned From Creating Money? An Analysis From the Perspective of Hierarchical Money," Journal of Economic Issues, Taylor & Francis Journals, vol. 51(4), pages 1019-1032, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arturas Sabalionis & Wenbo Wang & Hail Park, 2021. "What affects the price movements in Bitcoin and Ethereum?," Manchester School, University of Manchester, vol. 89(1), pages 102-127, January.
    2. Papadamou, Stephanos & Kyriazis, Nikolaos A. & Tzeremes, Panayiotis & Corbet, Shaen, 2021. "Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    3. M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
    4. Xiong, Jinwu & Liu, Qing & Zhao, Lei, 2020. "A new method to verify Bitcoin bubbles: Based on the production cost," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    5. Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
    6. Pele, Daniel Traian & Mazurencu-Marinescu-Pele, Miruna, 2019. "Metcalfe's law and herding behaviour in the cryptocurrencies market," Economics Discussion Papers 2019-16, Kiel Institute for the World Economy (IfW Kiel).
    7. Pele, Daniel Traian & Mazurencu-Marinescu-Pele, Miruna, 2018. "Cryptocurrencies, Metcalfe's law and LPPL models," IRTG 1792 Discussion Papers 2018-056, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Qiang Ji & Ronald D. Ripple & Dayong Zhang & Yuqian Zhao, 2022. "Cryptocurrency Bubble on the Systemic Risk in Global Energy Companies," The Energy Journal, , vol. 43(1_suppl), pages 1-24, June.
    9. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    10. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    11. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    12. Irena Barjav{s}i'c & Nino Antulov-Fantulin, 2020. "Time-varying volatility in Bitcoin market and information flow at minute-level frequency," Papers 2004.00550, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    2. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    5. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    6. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    7. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    8. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    9. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    10. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    11. Li Lin & Didier Sornette, 2018. "“Speculative Influence Network” during financial bubbles: application to Chinese stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 385-431, July.
    12. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    13. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    14. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    15. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    16. G. Demos & D. Sornette, 2017. "Birth or burst of financial bubbles: which one is easier to diagnose?," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 657-675, May.
    17. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Demos, G. & Sornette, D., 2019. "Comparing nested data sets and objectively determining financial bubbles’ inceptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 661-675.
    19. Hanwool Jang & Yena Song & Sungbin Sohn & Kwangwon Ahn, 2018. "Real Estate Soars and Financial Crises: Recent Stories," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
    20. Bikramaditya Ghosh & Spyros Papathanasiou & Vandita Dar & Dimitrios Kenourgios, 2022. "Deconstruction of the Green Bubble during COVID-19 International Evidence," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.05663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.