IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.03286.html
   My bibliography  Save this paper

Explicit size distributions of failure cascades redefine systemic risk on finite networks

Author

Listed:
  • Rebekka Burkholz
  • Hans J. Herrmann
  • Frank Schweitzer

Abstract

How big is the risk that a few initial failures of nodes in a network amplify to large cascades that span a substantial share of all nodes? Predicting the final cascade size is critical to ensure the functioning of a system as a whole. Yet, this task is hampered by uncertain or changing parameters and missing information. In infinitely large networks, the average cascade size can often be well estimated by established approaches building on local tree approximations and mean field approximations. Yet, as we demonstrate, in finite networks, this average does not even need to be a likely outcome. Instead, we find broad and even bimodal cascade size distributions. This phenomenon persists for system sizes up to $10^{7}$ and different cascade models, i.e. it is relevant for most real systems. To show this, we derive explicit closed-form solutions for the full probability distribution of the final cascade size. We focus on two topological limit cases, the complete network representing a dense network with a very narrow degree distribution, and the star network representing a sparse network with a inhomogeneous degree distribution. Those topologies are of great interest, as they either minimize or maximize the average cascade size and are common motifs in many real world networks.

Suggested Citation

  • Rebekka Burkholz & Hans J. Herrmann & Frank Schweitzer, 2018. "Explicit size distributions of failure cascades redefine systemic risk on finite networks," Papers 1802.03286, arXiv.org.
  • Handle: RePEc:arx:papers:1802.03286
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.03286
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    2. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    3. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    4. Martha G. Alatriste Contreras & Giorgio Fagiolo, 2014. "Propagation of economic shocks in input-output networks: A cross-country analysis," Post-Print hal-01474258, HAL.
    5. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    6. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    7. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    8. Hamed Amini & Rama Cont & Andreea Minca, 2016. "Resilience To Contagion In Financial Networks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 329-365, April.
    9. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906, Decembrie.
    10. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    11. Peter Klimek & Michael Obersteiner & Stefan Thurner, 2015. "Systemic trade-risk of critical resources," Papers 1504.03508, arXiv.org.
    12. Paolo Tasca & Stefano Battiston, "undated". "Diversification and Financial Stability," Working Papers CCSS-11-001, ETH Zurich, Chair of Systems Design.
    13. Claudio J. Tessone & Antonios Garas & Beniamino Guerra & Frank Schweitzer, "undated". "How big is too big? Critical Shocks for Systemic Failure Cascades," Working Papers ETH-RC-12-015, ETH Zurich, Chair of Systems Design.
    14. Battiston, Stefano & Gatti, Domenico Delli & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Default cascades: When does risk diversification increase stability?," Journal of Financial Stability, Elsevier, vol. 8(3), pages 138-149.
    15. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    16. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    17. Chaoran Liu & Daqing Li & Enrico Zio & Rui Kang, 2014. "A Modeling Framework for System Restoration from Cascading Failures," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Linqing Liu & Weiran Wang & Xiaofei Yan & Mengyun Shen & Haizhi Chen, 2023. "The cascade influence of grain trade shocks on countries in the context of the Russia-Ukraine conflict," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Covi, Giovanni & Gorpe, Mehmet Ziya & Kok, Christoffer, 2021. "CoMap: Mapping Contagion in the Euro Area Banking Sector," Journal of Financial Stability, Elsevier, vol. 53(C).
    2. Hitoshi Hayakawa, 2020. "Liquidity in Financial Networks," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 253-301, January.
    3. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    4. Irena Barjav{s}i'c & Stefano Battiston & Vinko Zlati'c, 2023. "Credit Valuation Adjustment in Financial Networks," Papers 2305.16434, arXiv.org.
    5. Co-Pierre Georg & Stefano Battiston & Tarik Roukny, 2014. "A Network Analysis of the Evolution of the German Interbank Market," Working Papers 461, Economic Research Southern Africa.
    6. Valentina Macchiati & Giuseppe Brandi & Tiziana Di Matteo & Daniela Paolotti & Guido Caldarelli & Giulio Cimini, 2022. "Systemic liquidity contagion in the European interbank market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 443-474, April.
    7. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    8. Navarro, Noemí & Tran, Dan H., 2018. "Shock Diffusion in Regular Networks: The Role of Transitive Cycles," MPRA Paper 86267, University Library of Munich, Germany.
    9. Mardi Dungey & Moses Kangogo & Vladimir Volkov, 2022. "Dynamic effects of network exposure on equity markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 569-629, December.
    10. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    11. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    12. Giulio Bottazzi & Alessandro De Sanctis & Fabio Vanni, 2016. "Non-performing loans, systemic risk and resilience in financial networks," LEM Papers Series 2016/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Kangogo, Moses & Volkov, Vladimir, 2021. "Dynamic effects of network exposure on equity markets," Working Papers 2021-03, University of Tasmania, Tasmanian School of Business and Economics.
    14. Capponi, Agostino & Corell, Felix & Stiglitz, Joseph E., 2022. "Optimal bailouts and the doom loop with a financial network," Journal of Monetary Economics, Elsevier, vol. 128(C), pages 35-50.
    15. Mark Paddrik & H. Peyton Young, 2016. "Contagion in the CDS Market," Working Papers 16-12, Office of Financial Research, US Department of the Treasury.
    16. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    17. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    18. Giansante, Simone & Manfredi, Sabato & Markose, Sheri, 2023. "Fair immunization and network topology of complex financial ecosystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    19. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    20. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.03286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.