IDEAS home Printed from
   My bibliography  Save this paper

Systemic trade-risk of critical resources


  • Peter Klimek
  • Michael Obersteiner
  • Stefan Thurner


In the wake of the 2008 financial crisis the role of strongly interconnected markets in fostering systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to deleterious cascades of supply shocks that increase systemic trade-risks and pose a threat to geopolitical stability. On a global and a regional level we show that supply risk, scarcity, and price volatility of non-fuel mineral resources are intricately connected with the structure of the world-trade network of or spanned by these resources. On the global level we demonstrate that the scarcity of a resource, as measured by its trade volume compared to extractable reserves, is closely related to the susceptibility of the trade network with respect to cascading shocks. On the regional level we find that to some extent the region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade-risk. The resources associated with the highest systemic trade-risk indicators are often those that are produced as byproducts of major metals. We identify significant shortcomings in the management of systemic trade-risk, in particular in the EU.

Suggested Citation

  • Peter Klimek & Michael Obersteiner & Stefan Thurner, 2015. "Systemic trade-risk of critical resources," Papers 1504.03508,
  • Handle: RePEc:arx:papers:1504.03508

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang, 2020. "Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China's import ban," Ecological Economics, Elsevier, vol. 172(C).
    2. Rebekka Burkholz & Hans J. Herrmann & Frank Schweitzer, 2018. "Explicit size distributions of failure cascades redefine systemic risk on finite networks," Papers 1802.03286,

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.03508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.