IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.03978.html
   My bibliography  Save this paper

Solving Dynamic Discrete Choice Models: Integrated or Expected Value Function?

Author

Listed:
  • Patrick Kofod Mogensen

Abstract

Dynamic Discrete Choice Models (DDCMs) are important in the structural estimation literature. Since the structural errors are practically always continuous and unbounded in nature, researchers often use the expected value function. The idea to solve for the expected value function made solution more practical and estimation feasible. However, as we show in this paper, the expected value function is impractical compared to an alternative: the integrated (ex ante) value function. We provide brief descriptions of the inefficacy of the former, and benchmarks on actual problems with varying cardinality of the state space and number of decisions. Though the two approaches solve the same problem in theory, the benchmarks support the claim that the integrated value function is preferred in practice.

Suggested Citation

  • Patrick Kofod Mogensen, 2018. "Solving Dynamic Discrete Choice Models: Integrated or Expected Value Function?," Papers 1801.03978, arXiv.org.
  • Handle: RePEc:arx:papers:1801.03978
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.03978
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andriy Norets, 2010. "Continuity and differentiability of expected value functions in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 1(2), pages 305-322, November.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
    4. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    5. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    6. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    7. Fedor Iskhakov & Jinhyuk Lee & John Rust & Bertel Schjerning & Kyoungwon Seo, 2016. "Comment on “Constrained Optimization Approaches to Estimation of Structural Models”," Econometrica, Econometric Society, vol. 84, pages 365-370, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    2. Aguirregabiria, Victor & Nevo, Aviv, 2010. "Recent developments in empirical IO: dynamic demand and dynamic games," MPRA Paper 27814, University Library of Munich, Germany.
    3. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    4. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    5. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    6. Otero, Karina V., 2016. "Nonparametric identification of dynamic multinomial choice games: unknown payoffs and shocks without interchangeability," MPRA Paper 86784, University Library of Munich, Germany.
    7. Andriy Norets, 2010. "Continuity and differentiability of expected value functions in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 1(2), pages 305-322, November.
    8. Peter Arcidiacono & Paul B. Ellickson, 2011. "Practical Methods for Estimation of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 363-394, September.
    9. Joao Macieira, 2010. "Oblivious Equilibrium in Dynamic Discrete Games," 2010 Meeting Papers 680, Society for Economic Dynamics.
    10. Artuc, Erhan, 2013. "PPML estimation of dynamic discrete choice models with aggregate shocks," Policy Research Working Paper Series 6480, The World Bank.
    11. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    12. Heckman, James J. & Raut, Lakshmi K., 2016. "Intergenerational long-term effects of preschool-structural estimates from a discrete dynamic programming model," Journal of Econometrics, Elsevier, vol. 191(1), pages 164-175.
    13. Victor Aguirregabiria & Cesar Alonso-Borrego, 2014. "Labor Contracts And Flexibility: Evidence From A Labor Market Reform In Spain," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 930-957, April.
    14. Peter Arcidiacono & Patrick Bayer & Federico A. Bugni & Jonathan James, 2012. "Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration," NBER Working Papers 17890, National Bureau of Economic Research, Inc.
    15. Peter Arcidiacono & Patrick Bayer & Jason R. Blevins & Paul B. Ellickson, 2016. "Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition," Review of Economic Studies, Oxford University Press, vol. 83(3), pages 889-931.
    16. Avery Haviv, 2020. "Technical Note—Cyclic Variables and Markov Decision Processes," Operations Research, INFORMS, vol. 68(4), pages 1231-1237, July.
    17. Scott, Paul, 2014. "Dynamic Discrete Choice Estimation of Agricultural Land Use," TSE Working Papers 14-526, Toulouse School of Economics (TSE).
    18. Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Working Papers tecipa-489, University of Toronto, Department of Economics.
    19. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    20. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.03978. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.