IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/17890.html
   My bibliography  Save this paper

Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration

Author

Listed:
  • Peter Arcidiacono
  • Patrick Bayer
  • Federico A. Bugni
  • Jonathan James

Abstract

Many dynamic problems in economics are characterized by large state spaces which make both computing and estimating the model infeasible. We introduce a method for approximating the value function of high-dimensional dynamic models based on sieves and establish results for the: (a) consistency, (b) rates of convergence, and (c) bounds on the error of approximation. We embed this method for approximating the solution to the dynamic problem within an estimation routine and prove that it provides consistent estimates of the model's parameters. We provide Monte Carlo evidence that our method can successfully be used to approximate models that would otherwise be infeasible to compute, suggesting that these techniques may substantially broaden the class of models that can be solved and estimated.

Suggested Citation

  • Peter Arcidiacono & Patrick Bayer & Federico A. Bugni & Jonathan James, 2012. "Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration," NBER Working Papers 17890, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:17890 Note: IO LS PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w17890.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
    3. Hugo Benitez-Silva & John Rust & Gunter Hitsch & Giorgio Pauletto & George Hall, 2000. "A Comparison Of Discrete And Parametric Methods For Continuous-State Dynamic Programming Problems," Computing in Economics and Finance 2000 24, Society for Computational Economics.
    4. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    5. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shintaro Yamaguchi, 2016. "Effects of Parental Leave Policies on Female Career and Fertility Choices," Department of Economics Working Papers 2016-10, McMaster University.
    2. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:17890. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.