IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.06183.html
   My bibliography  Save this paper

Risk-Constrained Kelly Gambling

Author

Listed:
  • Enzo Busseti
  • Ernest K. Ryu
  • Stephen Boyd

Abstract

We consider the classic Kelly gambling problem with general distribution of outcomes, and an additional risk constraint that limits the probability of a drawdown of wealth to a given undesirable level. We develop a bound on the drawdown probability; using this bound instead of the original risk constraint yields a convex optimization problem that guarantees the drawdown risk constraint holds. Numerical experiments show that our bound on drawdown probability is reasonably close to the actual drawdown risk, as computed by Monte Carlo simulation. Our method is parametrized by a single parameter that has a natural interpretation as a risk-aversion parameter, allowing us to systematically trade off asymptotic growth rate and drawdown risk. Simulations show that this method yields bets that out perform fractional-Kelly bets for the same drawdown risk level or growth rate. Finally, we show that a natural quadratic approximation of our convex problem is closely connected to the classical mean-variance Markowitz portfolio selection problem.

Suggested Citation

  • Enzo Busseti & Ernest K. Ryu & Stephen Boyd, 2016. "Risk-Constrained Kelly Gambling," Papers 1603.06183, arXiv.org.
  • Handle: RePEc:arx:papers:1603.06183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.06183
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Sid Browne, 2000. "Risk-Constrained Dynamic Active Portfolio Management," Management Science, INFORMS, vol. 46(9), pages 1188-1199, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niels Wesselhöfft & Wolfgang K. Härdle, 2020. "Risk-Constrained Kelly Portfolios Under Alpha-Stable Laws," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 801-826, March.
    2. Guillermo Angeris & Alex Evans & Tarun Chitra, 2020. "When does the tail wag the dog? Curvature and market making," Papers 2012.08040, arXiv.org.
    3. V'elez Jim'enez & Rom'an Alberto & Lecuanda Ontiveros & Jos'e Manuel & Edgar Possani, 2023. "Sports Betting: an application of neural networks and modern portfolio theory to the English Premier League," Papers 2307.13807, arXiv.org.
    4. Cavallero, S. & Rousselot, A. & Pugatch, R. & Dinis, L. & Lacoste, D., 2025. "The trade-off between growth and risk in Kelly’s gambling and beyond," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
    5. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    6. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard, C. & De Gennaro Aquino, L. & Vanduffel, S., 2023. "Optimal multivariate financial decision making," European Journal of Operational Research, Elsevier, vol. 307(1), pages 468-483.
    2. Minjie Yu & Qiang Zhang & Dennis Yang, 2008. "Bankruptcy in long-term investments," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 777-794.
    3. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    4. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    5. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    6. Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
    7. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    8. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    9. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    10. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    11. Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
    12. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    15. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    16. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    17. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    18. Mounira Chniguir & Mohamed Karim Kefi & Jamel Eddine Henchiri, 2017. "The Determinants of Home Bias in Stock Portfolio: An Emerging and Developed Markets Study," International Journal of Economics and Financial Issues, Econjournals, vol. 7(6), pages 182-191.
    19. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    20. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.06183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.