IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1408.6070.html
   My bibliography  Save this paper

Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation

Author

Listed:
  • Xiangyu Cui
  • Xun Li
  • Duan Li
  • Yun Shi

Abstract

When we implement a portfolio selection methodology under a mean-risk formulation, it is essential to correctly model investors' risk aversion which may be time-dependent, or even state-dependent during the investment procedure. In this paper, we propose a behavior risk aversion model, which is a piecewise linear function of the current wealth level with a reference point at a preset investment target. Due to the time inconsistency of the resulting multi-period mean-variance model with an adaptive risk aversion, we investigate in this paper the time consistent behavior portfolio policy by solving a nested mean-variance game formulation. We derive semi-analytical time consistent behavior portfolio policy which takes a piecewise linear feedback form of the current wealth level with respect to the discounted investment target.

Suggested Citation

  • Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
  • Handle: RePEc:arx:papers:1408.6070
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1408.6070
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Napp, C., 2003. "The Dalang-Morton-Willinger theorem under cone constraints," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 111-126, February.
    2. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    3. Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    6. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    7. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    8. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    11. Kang Boda & Jerzy Filar, 2006. "Time Consistent Dynamic Risk Measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 169-186, February.
    12. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    13. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2017. "Time consistent behavioral portfolio policy for dynamic mean–variance formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1647-1660, December.
    2. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    3. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    4. Yun Shi & Xun Li & Xiangyu Cui, 2017. "Better than pre-committed optimal mean-variance policy in a jump diffusion market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 327-347, June.
    5. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    6. Cui, Xiangyu & Gao, Jianjun & Shi, Yun & Zhu, Shushang, 2019. "Time-consistent and self-coordination strategies for multi-period mean-Conditional Value-at-Risk portfolio selection," European Journal of Operational Research, Elsevier, vol. 276(2), pages 781-789.
    7. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    8. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    9. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    10. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    11. Felix Fie{ss}inger & Mitja Stadje, 2023. "Time-Consistent Asset Allocation for Risk Measures in a L\'evy Market," Papers 2305.09471, arXiv.org, revised Jun 2023.
    12. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    13. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    14. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    15. Martijn Pistorius & Mitja Stadje, 2016. "On Dynamic Deviation Measures and Continuous-Time Portfolio Optimisation," Papers 1604.08037, arXiv.org.
    16. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    17. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    18. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.
    19. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    20. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1408.6070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.