IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs

  • Colin Atkinson
  • Emmeline Storey
Registered author(s):

    Portfolio theory covers different approaches to the construction of a portfolio offering maximum expected returns for a given level of risk tolerance where the goal is to find the optimal investment rule. Each investor has a certain utility for money which is reflected by the choice of a utility function. In this article, a risk averse power utility function is studied in discrete time for a large class of underlying probability distribution of the returns of the asset prices. Each investor chooses, at the beginning of an investment period, the feasible portfolio allocation which maximizes the expected value of the utility function for terminal wealth. Effects of both large and small proportional transaction costs on the choice of an optimal portfolio are taken into account. The transaction regions are approximated by using asymptotic methods when the proportional transaction costs are small and by using expansions about critical points for large transaction costs.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860903336437
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 17 (2010)
    Issue (Month): 4 ()
    Pages: 323-357

    as
    in new window

    Handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357
    Contact details of provider: Web page: http://www.tandfonline.com/RAMF20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/RAMF20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.