IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v17y2010i4p323-357.html
   My bibliography  Save this article

Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs

Author

Listed:
  • Colin Atkinson
  • Emmeline Storey

Abstract

Portfolio theory covers different approaches to the construction of a portfolio offering maximum expected returns for a given level of risk tolerance where the goal is to find the optimal investment rule. Each investor has a certain utility for money which is reflected by the choice of a utility function. In this article, a risk averse power utility function is studied in discrete time for a large class of underlying probability distribution of the returns of the asset prices. Each investor chooses, at the beginning of an investment period, the feasible portfolio allocation which maximizes the expected value of the utility function for terminal wealth. Effects of both large and small proportional transaction costs on the choice of an optimal portfolio are taken into account. The transaction regions are approximated by using asymptotic methods when the proportional transaction costs are small and by using expansions about critical points for large transaction costs.

Suggested Citation

  • Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
  • Handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357
    DOI: 10.1080/13504860903336437
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860903336437
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.