IDEAS home Printed from
   My bibliography  Save this article

Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs


  • Colin Atkinson
  • Emmeline Storey


Portfolio theory covers different approaches to the construction of a portfolio offering maximum expected returns for a given level of risk tolerance where the goal is to find the optimal investment rule. Each investor has a certain utility for money which is reflected by the choice of a utility function. In this article, a risk averse power utility function is studied in discrete time for a large class of underlying probability distribution of the returns of the asset prices. Each investor chooses, at the beginning of an investment period, the feasible portfolio allocation which maximizes the expected value of the utility function for terminal wealth. Effects of both large and small proportional transaction costs on the choice of an optimal portfolio are taken into account. The transaction regions are approximated by using asymptotic methods when the proportional transaction costs are small and by using expansions about critical points for large transaction costs.

Suggested Citation

  • Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
  • Handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357 DOI: 10.1080/13504860903336437

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Shane Miller & Eckhard Platen, 2004. "A Two-Factor Model for Low Interest Rate Regimes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 107-133, March.
    2. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(04), pages 533-554, November.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    4. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    5. David Heath & Eckhard Platen, 2002. "Consistent pricing and hedging for a modified constant elasticity of variance model," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 459-467.
    6. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151.
    7. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    8. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    9. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    10. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. MacBeth, James D & Merville, Larry J, 1980. " Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    12. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    13. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 241-264, June.
    14. Eckhard Platen, 2004. "Diversified Portfolios with Jumps in a Benchmark Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 1-22, March.
    15. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.