IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Block Sampling under Strong Dependence

  • Ting Zhang
  • Hwai-Chung Ho
  • Martin Wendler
  • Wei Biao Wu
Registered author(s):

    The paper considers the block sampling method for long-range dependent processes. Our theory generalizes earlier ones by Hall, Jing and Lahiri (1998) on functionals of Gaussian processes and Nordman and Lahiri (2005) on linear processes. In particular, we allow nonlinear transforms of linear processes. Under suitable conditions on physical dependence measures, we prove the validity of the block sampling method. The problem of estimating the self-similar index is also studied.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1312.5807
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1312.5807.

    as
    in new window

    Length:
    Date of creation: Dec 2013
    Date of revision:
    Handle: RePEc:arx:papers:1312.5807
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Wu, Wei Biao, 2006. "Unit Root Testing For Functionals Of Linear Processes," Econometric Theory, Cambridge University Press, vol. 22(01), pages 1-14, February.
    2. Lahiri, S. N., 1993. "On the moving block bootstrap under long range dependence," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 405-413, December.
    3. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, EconWPA.
    4. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    5. Chung, Ching-Fan, 2002. "Sample Means, Sample Autocovariances, And Linear Regression Of Stationary Multivariate Long Memory Processes," Econometric Theory, Cambridge University Press, vol. 18(01), pages 51-78, February.
    6. Nordman, Daniel J. & Lahiri, Soumendra N., 2005. "Validity Of The Sampling Window Method For Long-Range Dependent Linear Processes," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1087-1111, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.5807. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.