Empirical likelihood confidence intervals for the mean of a long‐range dependent process
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9892.2006.00526.x
Download full text from publisher
Other versions of this item:
- Nordman, Dan Nordman & Sibbertsen, Philipp & Lahiri, Soumendra N., 2005. "Empirical likelihood confidence intervals for the mean of a long-range dependent process," Hannover Economic Papers (HEP) dp-327, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feifan Jiang & Lihong Wang, 2018. "Adjusted blockwise empirical likelihood for long memory time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 319-332, June.
- Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
- Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
- Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
- Gianfranco Adimari & Annamaria Guolo, 2010. "A note on the asymptotic behaviour of empirical likelihood statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 463-476, November.
More about this item
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:28:y:2007:i:4:p:576-599. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/bla/jtsera/v28y2007i4p576-599.html