IDEAS home Printed from
   My bibliography  Save this paper

On the martingale problem for degenerate-parabolic partial differential operators with unbounded coefficients and a mimicking theorem for Ito processes


  • Paul M. N. Feehan
  • Camelia Pop


Using results from our companion article [arXiv:1112.4824v2] on a Schauder approach to existence of solutions to a degenerate-parabolic partial differential equation, we solve three intertwined problems, motivated by probability theory and mathematical finance, concerning degenerate diffusion processes. We show that the martingale problem associated with a degenerate-elliptic differential operator with unbounded, locally Holder continuous coefficients on a half-space is well-posed in the sense of Stroock and Varadhan. Second, we prove existence, uniqueness, and the strong Markov property for weak solutions to a stochastic differential equation with degenerate diffusion and unbounded coefficients with suitable H\"older continuity properties. Third, for an Ito process with degenerate diffusion and unbounded but appropriately regular coefficients, we prove existence of a strong Markov process, unique in the sense of probability law, whose one-dimensional marginal probability distributions match those of the given Ito process.

Suggested Citation

  • Paul M. N. Feehan & Camelia Pop, 2012. "On the martingale problem for degenerate-parabolic partial differential operators with unbounded coefficients and a mimicking theorem for Ito processes," Papers 1211.4636,, revised Aug 2013.
  • Handle: RePEc:arx:papers:1211.4636

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Marc Atlan, 2006. "Localizing Volatilities," Papers math/0604316,
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1211.4636. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.