IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.08067.html
   My bibliography  Save this paper

Smile asymptotic for Bachelier Implied Volatility

Author

Listed:
  • Roberto Baviera
  • Michele Domenico Massaria

Abstract

We investigate the asymptotic behaviour of the Implied Volatility in the Bachelier setting, extending the framework introduced by Benaim and Friz for the Black-Scholes setting. Exploiting the theory of regular variation, we derive explicit expressions for the Bachelier Implied Volatility in the wings of the smile, linking these to the tail behaviour of the underlying's returns' distribution. Furthermore, we establish a direct connection between the analyticity strip of the returns' characteristic function and the asymptotic formula for the Implied Volatility smile at extreme moneyness.

Suggested Citation

  • Roberto Baviera & Michele Domenico Massaria, 2025. "Smile asymptotic for Bachelier Implied Volatility," Papers 2506.08067, arXiv.org.
  • Handle: RePEc:arx:papers:2506.08067
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.08067
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michele Azzone & Roberto Baviera, 2022. "Additive normal tempered stable processes for equity derivatives and power-law scaling," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 501-518, March.
    2. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    3. repec:dau:papers:123456789/1380 is not listed on IDEAS
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Michele Azzone & Roberto Baviera, 2019. "Additive normal tempered stable processes for equity derivatives and power law scaling," Papers 1909.07139, arXiv.org, revised Jan 2022.
    6. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    7. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2007. "Self‐Decomposability And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 31-57, January.
    8. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Baviera & Michele Domenico Massaria, 2025. "The Additive Bachelier model with an application to the oil option market in the Covid period," Papers 2506.09760, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    4. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    5. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    6. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    7. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.
    8. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    9. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    10. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    11. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    12. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    13. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    14. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    15. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2013. "Marginal density expansions for diffusions and stochastic volatility, part II: Applications [to the Stein--Stein model]," Papers 1305.6765, arXiv.org.
    16. Antonie Kotzé & Rudolf Oosthuizen & Edson Pindza, 2015. "Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options," JRFM, MDPI, vol. 8(1), pages 1-40, January.
    17. Sergey Badikov & Mark H.A. Davis & Antoine Jacquier, 2021. "Perturbation analysis of sub/super hedging problems," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1240-1274, October.
    18. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    19. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    20. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.08067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.