IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1305.6765.html
   My bibliography  Save this paper

Marginal density expansions for diffusions and stochastic volatility, part II: Applications [to the Stein--Stein model]

Author

Listed:
  • J. D. Deuschel
  • P. K. Friz
  • A. Jacquier
  • S. Violante

Abstract

In the compagnion paper [Marginal density expansions for diffusions and stochastic volatility, part I] we discussed density expansions for multidimensional diffusions $(X^1,...,X^d)$, at fixed time $T$ and projected to their first $l$ coordinates, in the small noise regime. Global conditions were found which replace the well-known "not-in-cutlocus" condition known from heat-kernel asymptotics. In the present paper we discuss financial applications; these include tail and implied volatility asymptotics in some correlated stochastic volatility models. In particular, we solve a problem left open by A. Gulisashvili and E.M. Stein (2009).

Suggested Citation

  • J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2013. "Marginal density expansions for diffusions and stochastic volatility, part II: Applications [to the Stein--Stein model]," Papers 1305.6765, arXiv.org.
  • Handle: RePEc:arx:papers:1305.6765
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1305.6765
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12.
    4. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1305.6765. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.