IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Schauder approach to degenerate-parabolic partial differential equations with unbounded coefficients

Listed author(s):
  • Paul M. N. Feehan
  • Camelia Pop
Registered author(s):

    Motivated by applications to probability and mathematical finance, we consider a parabolic partial differential equation on a half-space whose coefficients are suitably Holder continuous and allowed to grow linearly in the spatial variable and which become degenerate along the boundary of the half-space. We establish existence and uniqueness of solutions in weighted Holder spaces which incorporate both the degeneracy at the boundary and the unboundedness of the coefficients. In our companion article [arXiv:1211.4636], we apply the main result of this article to show that the martingale problem associated with a degenerate-elliptic partial differential operator is well-posed in the sense of Stroock and Varadhan.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1112.4824.

    in new window

    Date of creation: Dec 2011
    Date of revision: Aug 2013
    Publication status: Published in Journal of Differential Equations 254 (2013), 4401-4445
    Handle: RePEc:arx:papers:1112.4824
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Marc Atlan, 2006. "Localizing Volatilities," Papers math/0604316,
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.4824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.