IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.2665.html
   My bibliography  Save this paper

Representation Theory for Risk On Markowitz-Tversky-Kahneman Topology

Author

Listed:
  • Godfrey Charles-Cadogan

Abstract

We introduce a representation theory for risk operations on locally compact groups in a partition of unity on a topological manifold for Markowitz-Tversky-Kahneman (MTK) reference points. We identify (1) risk torsion induced by the flip rate for risk averse and risk seeking behaviour, and (2) a structure constant or coupling of that torsion in the paracompact manifold. The risk torsion operator extends by continuity to prudence and maxmin expected utility (MEU) operators, as well as other behavioural operators introduced by the Italian school. In our erstwhile chaotic dynamical system, induced by behavioural rotations of probability domains, the loss aversion index is an unobserved gauge transformation; and reference points are hyperbolic on the utility hypersurface characterized by the special unitary group SU(n). We identify conditions for existence of harmonic utility functions on paracompact MTK manifolds induced by transformation groups. And we use those mathematical objects to estimate: (1) loss aversion index from infinitesimal tangent vectors; and (2) value function from a classic Dirichlet problem for first exit time of Brownian motion from regular points on the boundary of MTK base topology.

Suggested Citation

  • Godfrey Charles-Cadogan, 2012. "Representation Theory for Risk On Markowitz-Tversky-Kahneman Topology," Papers 1206.2665, arXiv.org.
  • Handle: RePEc:arx:papers:1206.2665
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.2665
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    2. Chateauneuf, Alain & Faro, José Heleno, 2009. "Ambiguity through confidence functions," Journal of Mathematical Economics, Elsevier, vol. 45(9-10), pages 535-558, September.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    4. Busemeyer, Jerome R. & Diederich, Adele, 2002. "Survey of decision field theory," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 345-370, July.
    5. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56, pages 279-279.
    6. Kobberling, Veronika & Wakker, Peter P., 2005. "An index of loss aversion," Journal of Economic Theory, Elsevier, vol. 122(1), pages 119-131, May.
    7. Ariane Lambert Mogiliansky & Shmuel Zamir & Herve Zwirn, 2003. "Type Indeterminacy: A Model of the KT(Kahneman-Tversky)-man," Discussion Paper Series dp343, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. Mohammed Abdellaoui & Han Bleichrodt & Corina Paraschiv, 2007. "Loss Aversion Under Prospect Theory: A Parameter-Free Measurement," Management Science, INFORMS, vol. 53(10), pages 1659-1674, October.
    9. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    10. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    11. V. Yukalov & D. Sornette, 2011. "Decision theory with prospect interference and entanglement," Theory and Decision, Springer, vol. 70(3), pages 283-328, March.
    12. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    13. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    14. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60, pages 151-151.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D0 - Microeconomics - - General
    • C0 - Mathematical and Quantitative Methods - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.2665. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.