IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15446.html
   My bibliography  Save this paper

Static Portfolio Choice under Cumulative Prospect Theory

Author

Listed:
  • Bernard, Carole
  • Ghossoub, Mario

Abstract

We derive the optimal portfolio choice for an investor who behaves according to Cumulative Prospect Theory. The study is done in a one-period economy with one risk-free asset and one risky asset, and the reference point corresponds to the terminal wealth arising when the entire initial wealth is invested into the risk-free asset. When it exists, the optimal holding is a function of a generalized Omega measure of the distribution of the excess return on the risky asset over the risk-free rate. It conceptually resembles Merton’s optimal holding for a CRRA expected-utility maximizer. We derive some properties of the optimal holding and illustrate our results using a simple example where the excess return has a skew-normal distribution. In particular, we show how a Cumulative Prospect Theory investor is highly sensitive to the skewness of the excess return on the risky asset. In the model we adopt, with a piecewise-power value function with different shape parameters, loss aversion might be violated for reasons that are now well-understood in the literature. Nevertheless, we argue, on purely behavioral grounds, that this violation is acceptable.

Suggested Citation

  • Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15446
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15446/1/MPRA_paper_15446.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/16230/1/MPRA_paper_16230.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/16474/1/MPRA_paper_16474.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/16502/1/MPRA_paper_16502.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ulrich Schmidt & Horst Zank, 2007. "Linear cumulative prospect theory with applications to portfolio selection and insurance demand," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 30(1), pages 1-18, May.
    2. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    3. De Giorgi, Enrico & Hens, Thorsten & Rieger, Marc Oliver, 2010. "Financial market equilibria with cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 633-651, September.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    8. Handa, Jagdish, 1977. "Risk, Probabilities, and a New Theory of Cardinal Utility," Journal of Political Economy, University of Chicago Press, vol. 85(1), pages 97-122, February.
    9. Ulrich Schmidt & Horst Zank, 2005. "What is Loss Aversion?," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 157-167, January.
    10. Neilson, William S, 2002. "Comparative Risk Sensitivity with Reference-Dependent Preferences," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 131-142, March.
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    13. Robert Jarrow & Feng Zhao, 2006. "Downside Loss Aversion and Portfolio Management," Management Science, INFORMS, vol. 52(4), pages 558-566, April.
    14. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    15. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    16. Manel Baucells & Franz H. Heukamp, 2006. "Stochastic Dominance and Cumulative Prospect Theory," Management Science, INFORMS, vol. 52(9), pages 1409-1423, September.
    17. Francisco J. Gomes, 2005. "Portfolio Choice and Trading Volume with Loss-Averse Investors," The Journal of Business, University of Chicago Press, vol. 78(2), pages 675-706, March.
    18. Kobberling, Veronika & Wakker, Peter P., 2005. "An index of loss aversion," Journal of Economic Theory, Elsevier, vol. 122(1), pages 119-131, May.
    19. L. Eeckhoudt & C. Gollier & H. Schlesinger, 2005. "Economic and financial decisions under risk," Post-Print hal-00325882, HAL.
    20. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    21. Wakker, Peter & Tversky, Amos, 1993. "An Axiomatization of Cumulative Prospect Theory," Journal of Risk and Uncertainty, Springer, vol. 7(2), pages 147-175, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    2. Horst Zank, 2010. "On probabilities and loss aversion," Theory and Decision, Springer, vol. 68(3), pages 243-261, March.
    3. Ulrich Schmidt & Horst Zank, 2008. "Risk Aversion in Cumulative Prospect Theory," Management Science, INFORMS, vol. 54(1), pages 208-216, January.
    4. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE.
    5. Ulrich Schmidt & Horst Zank, 2005. "What is Loss Aversion?," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 157-167, January.
    6. Peter Brooks & Horst Zank, 2005. "Loss Averse Behavior," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 301-325, December.
    7. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    8. Mohammed Abdellaoui & Han Bleichrodt & Corina Paraschiv, 2007. "Loss Aversion Under Prospect Theory: A Parameter-Free Measurement," Management Science, INFORMS, vol. 53(10), pages 1659-1674, October.
    9. Wang, Jianli & Liu, Liqun & Neilson, William S., 2020. "The participation puzzle with reference-dependent expected utility preferences," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 278-287.
    10. Pavlo Blavatskyy, 2021. "A simple non-parametric method for eliciting prospect theory's value function and measuring loss aversion under risk and ambiguity," Theory and Decision, Springer, vol. 91(3), pages 403-416, October.
    11. Ulrich Schmidt & Chris Starmer & Robert Sugden, 2008. "Third-generation prospect theory," Journal of Risk and Uncertainty, Springer, vol. 36(3), pages 203-223, June.
    12. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.
    13. George Wu & Alex B. Markle, 2008. "An Empirical Test of Gain-Loss Separability in Prospect Theory," Management Science, INFORMS, vol. 54(7), pages 1322-1335, July.
    14. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    15. Valeri Zakamouline & Steen Koekebakker, 2009. "A Generalisation of the Mean†Variance Analysis," European Financial Management, European Financial Management Association, vol. 15(5), pages 934-970, November.
    16. Mohammed Abdellaoui & Han Bleichrodt & Olivier L’Haridon & Dennie Dolder, 2016. "Measuring Loss Aversion under Ambiguity: A Method to Make Prospect Theory Completely Observable," Journal of Risk and Uncertainty, Springer, vol. 52(1), pages 1-20, February.
    17. Schmidt, Ulrich & Zank, Horst, 2009. "A simple model of cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 308-319, March.
    18. Ghossoub, Mario, 2011. "Towards a Purely Behavioral Definition of Loss Aversion," MPRA Paper 37628, University Library of Munich, Germany, revised 23 Mar 2012.
    19. P Brooks & H Zank, 2004. "Attitudes on Gain and Loss Lotteries: A Simple Experiment," Economics Discussion Paper Series 0402, Economics, The University of Manchester.
    20. Thomas Epper & Helga Fehr-Duda, 2012. "The missing link: unifying risk taking and time discounting," ECON - Working Papers 096, Department of Economics - University of Zurich, revised Oct 2018.

    More about this item

    Keywords

    Cumulative Prospect Theory; Portfolio Choice; Behavioral Finance; Omega Measure.;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15446. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.