Understanding Data About the Supplemental Nutrition Assistance Program (SNAP) in the Circana Consumer Network Panel
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.352084
Download full text from publisher
References listed on IDEAS
- Melvin Stephens, 2008.
"The Consumption Response to Predictable Changes in Discretionary Income: Evidence from the Repayment of Vehicle Loans,"
The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 241-252, May.
- Melvin Stephens Jr., 2003. "The Consumption Response to Predictable Changes in Discretionary Income: Evidence from the Repayment of Vehicle Loans," NBER Working Papers 9976, National Bureau of Economic Research, Inc.
- Gray, Colin, 2019. "Leaving benefits on the table: Evidence from SNAP," Journal of Public Economics, Elsevier, vol. 179(C).
- Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015.
"Household Surveys in Crisis,"
Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
- Bruce D. Meyer & Wallace K.C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," NBER Working Papers 21399, National Bureau of Economic Research, Inc.
- Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Emily Oster, 2018. "Diabetes and Diet: Purchasing Behavior Change in Response to Health Information," American Economic Journal: Applied Economics, American Economic Association, vol. 10(4), pages 308-348, October.
- Okrent, Abigail M. & Elitzak, Howard & Park, Timothy & Rehkamp, Sarah, 2018. "Measuring the Value of the U.S. Food System: Revisions to the Food Expenditure Series," Technical Bulletins 277568, United States Department of Agriculture, Economic Research Service.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Hugo Storm & Kathy Baylis & Thomas Heckelei, 2020. "Machine learning in agricultural and applied economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 849-892.
- Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
- Elena Castellari & Chad Cotti & John Gordanier & Orgul Ozturk, 2017. "Does the Timing of Food Stamp Distribution Matter? A Panel‐Data Analysis of Monthly Purchasing Patterns of US Households," Health Economics, John Wiley & Sons, Ltd., vol. 26(11), pages 1380-1393, November.
- Chen Zhen & Mary Muth & Abigail Okrent & Shawn Karns & Derick Brown & Peter Siegel, 2019. "Do differences in reported expenditures between household scanner data and expenditure surveys matter in health policy research?," Health Economics, John Wiley & Sons, Ltd., vol. 28(6), pages 782-800, June.
- Jessica E. Todd, 2015. "Revisiting the Supplemental Nutrition Assistance Program cycle of food intake: Investigating heterogeneity, diet quality, and a large boost in benefit amounts," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 37(3), pages 437-458.
- Bruce D. Meyer & Nikolas Mittag & Robert M. Goerge, 2022. "Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation," Journal of Human Resources, University of Wisconsin Press, vol. 57(5), pages 1605-1644.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mindy Marks & Silvia Prina & Roy Gernhardt, 2025.
"Government shutdown and SNAP disbursements: effects on household expenditures,"
Review of Economics of the Household, Springer, vol. 23(1), pages 295-326, March.
- Marks, Mindy & Prina, Silvia & Gernhardt, Roy, 2023. "Government Shutdown and SNAP Disbursements: Effects on Household Expenditures," IZA Discussion Papers 16452, Institute of Labor Economics (IZA).
- Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.
- Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
- Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021.
"China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
- Shao, Yongtong & Xiong, Tao & Li, Minghao & Hayes, Dermot & Zhang, Wendong & Xie, Wei, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," ISU General Staff Papers 202001010800001619, Iowa State University, Department of Economics.
- Yongtong Shao & Minghao Li & Dermot J. Hayes & Wendong Zhang & Tao Xiong & Wei Xie, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," Center for Agricultural and Rural Development (CARD) Publications 20-wp607, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
- Marks, Mindy & Prina, Silvia & Tahaj, Redina, 2024.
"Short-term labor supply response to the timing of transfer payments: Evidence from the SNAP program,"
Labour Economics, Elsevier, vol. 91(C).
- Marks, Mindy & Prina, Silvia & Tahaj, Redina, 2023. "Short-Term Labor Supply Response to the Timing of Transfer Payments: Evidence from the SNAP Program," IZA Discussion Papers 16299, Institute of Labor Economics (IZA).
- Baaken, Dominik & Hess, Sebastian, 2021. "Regionale Milchmengenprognose: Regressionsmodelle und Maschinelles Lernen im Vergleich," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317056, German Association of Agricultural Economists (GEWISOLA).
- Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
- Baaken, Dominik & Hess, Sebastian, 2021. "Forecasting Regional Milk Production Quantity: A Comparison of Regression Models and Machine Learning," 2021 Conference, August 17-31, 2021, Virtual 315117, International Association of Agricultural Economists.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Katherine Harris‐Lagoudakis & Hannah Wich, 2024. "Purchases over the SNAP benefit cycle: Evidence from supermarket panel data," Economic Inquiry, Western Economic Association International, vol. 62(4), pages 1426-1448, October.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," ERSA Working Paper Series, Economic Research Southern Africa, vol. 0.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
GLO Discussion Paper Series
1445, Global Labor Organization (GLO).
- Dang, Hai-Anh H & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
- Vikesh Amin & Jere R. Behrman & Jason M. Fletcher & Carlos A. Flores & Alfonso Flores-Lagunes & Hans-Peter Kohler, 2022.
"Does Schooling Improve Cognitive Abilities at Older Ages: Causal Evidence from Nonparametric Bounds,"
PIER Working Paper Archive
22-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Amin, Vikesh & Behrman, Jere R. & Fletcher, Jason M. & Flores, Carlos A. & Flores-Lagunes, Alfonso & Kohler, Hans-Peter, 2022. "Does Schooling Improve Cognitive Abilities at Older Ages? Causal Evidence from Nonparametric Bounds," GLO Discussion Paper Series 1114, Global Labor Organization (GLO).
- Vikesh Amin & Jere R. Behrman & Jason M. Fletcher & Carlos A. Flores & Alfonso Flores-Lagunes & Hans-Peter Kohler, 2025. "Does Schooling Improve Cognitive Abilities at Older Ages? Causal Evidence from Nonparametric Bounds," Upjohn Working Papers 25-417, W.E. Upjohn Institute for Employment Research.
- Amin, Vikesh & Behrman, Jere R. & Fletcher, Jason M. & Flores, Carlos A. & Flores-Lagunes, Alfonso & Kohler, Hans-Peter, 2022. "Does Schooling Improve Cognitive Abilities at Older Ages: Causal Evidence from Nonparametric Bounds," IZA Discussion Papers 15371, Institute of Labor Economics (IZA).
- Millimet, Daniel L. & Roy, Jayjit, 2015. "Multilateral environmental agreements and the WTO," Economics Letters, Elsevier, vol. 134(C), pages 20-23.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018.
"Nonparametric estimation in case of endogenous selection,"
Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2015. "Nonparametric estimation in case of endogenous selection," SFB 649 Discussion Papers 2015-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2017. "Nonparametric Estimation in Case of Endogenous Selection," Rationality and Competition Discussion Paper Series 58, CRC TRR 190 Rationality and Competition.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2018. "Nonparametric estimation in case of endogenous selection," Post-Print hal-03089885, HAL.
- Arenas, Andreu & Calsamiglia, Caterina, 2022.
"Gender Differences in High-Stakes Performance and College Admission Policies,"
IZA Discussion Papers
15550, Institute of Labor Economics (IZA).
- Andreu Arenas & Caterina Calsamiglia, 2023. "Gender Differences in High-Stakes Performance and College Admission Policies," Working Papers 2023/13, Institut d'Economia de Barcelona (IEB).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
More about this item
Keywords
Agricultural and Food Policy; Food Security and Poverty; Institutional and Behavioral Economics; Research Methods/Statistical Methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uerstb:352084. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ersgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.