IDEAS home Printed from https://ideas.repec.org/p/ags/rffdps/10778.html
   My bibliography  Save this paper

Forestry Sequestration of CO2 and Markets for Timber

Author

Listed:
  • Sedjo, Roger A.
  • Sohngen, Brent

Abstract

Forestry has been considered to have potential in reducing the atmospheric concentration of carbon dioxide by sequestrating carbon in above-ground timber and below-ground roots and soil. This potential has been noted in the Kyoto Protocol, which identified specific forestry activities for which carbon sequestration credits could be obtained. To date, a few forestry efforts have been undertaken for carbon purposes, but most of these efforts have been on a small scale. Proposals have been under discussion, however, that would result in the creation of very large areas of new forest for the purpose of offsetting some of the additional carbon that is being released into the atmosphere. Concerns are expressed, however, that large-scale sequestration operations might have impacts on the world timber market, affecting timber prices and thereby reducing the incentives of traditional suppliers to invest in forest management and new timber production. Such a "crowding out" or "leakage" effect, as it is called in the literature, could negate much or all of the sequestered carbon by the newly created sequestration forests. Accordingly, the purpose of this study is to examine and assess the interactions between carbon sequestration forestry, particularly, newly created carbon forests, and the markets for timber. The approach of this study involves utilizing an existing Dynamic Timber Supply Model (DTSM) to examine the interactions between newly created sequestration forests and the markets for timber. This model has been used to examine global timber supply and, more recently, has been modified to include carbon considerations. This study suggests that even without any specific sequestration efforts, commercial forestry offers the potential to sequester substantial volumes of carbon, approaching ten gigatons (Gt) (or petagrams (Pg)), in vegetation, soils and market products over the next century. At current rates of atmospheric carbon build up this is equal to about three years of net carbon releases into the atmosphere. This volume of carbon sequestration could be increased 50-100% by 50 million hectares (ha) of rapidly growing carbon-sequestering plantation forests, even given the anticipated leakages due to market price effects. Finally, the projections suggest that the amount of crowding out and carbon leakages are likely to be very modest. The 50 million ha of carbon plantations are projected to reduce land areas in industrial plantations, that is, crowd out, only from 0.2 to 7.8 million ha over the 100-year period. The addition of carbon sequestration forests offers the potential to increase the carbon sequestration of the forest system more than 50%, up to 5.7 Gts, above that already captured from market activity. This estimate assumes that crowding out and associated projected leakages will occur. At current rates of atmospheric carbon buildup, about 2.8% of the expected total buildup in atmospheric carbon over the next century could be offset by 50 million ha of carbon plantations.

Suggested Citation

  • Sedjo, Roger A. & Sohngen, Brent, 2000. "Forestry Sequestration of CO2 and Markets for Timber," Discussion Papers 10778, Resources for the Future.
  • Handle: RePEc:ags:rffdps:10778
    DOI: 10.22004/ag.econ.10778
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/10778/files/dp000035.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.10778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth M. Chomitz, 2002. "Baseline, leakage and measurement issues: how do forestry and energy projects compare?," Climate Policy, Taylor & Francis Journals, vol. 2(1), pages 35-49, March.
    2. Jayant Sathaye & Kenneth Andrasko, 2007. "Special issue on estimation of baselines and leakage in carbon mitigation forestry projects," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(6), pages 963-970, July.
    3. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    4. Lyon, Kenneth S., 2004. "Modeling Timber Supply, Fuel-Wood, And Atmospheric Carbon Mitigation," Economics Research Institute, ERI Series 28339, Utah State University, Economics Department.
    5. Stibniati Atmadja & Louis Verchot, 2012. "A review of the state of research, policies and strategies in addressing leakage from reducing emissions from deforestation and forest degradation (REDD+)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(3), pages 311-336, March.
    6. Kolstad, Charles D. & Toman, Michael, 2005. "The Economics of Climate Policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618, Elsevier.
    7. Sedjo, Roger, 2001. "Forest Carbon Sequestration: Some Issues for Forest Investments," RFF Working Paper Series dp-01-34, Resources for the Future.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    3. Dale W. Henderson & Stephen W. Salant, 1976. "Market anticipations, government policy, and the price of gold," International Finance Discussion Papers 81, Board of Governors of the Federal Reserve System (U.S.).
    4. Hala Abu-Kalla & Ruslana Rachel Palatnik & Ofira Ayalon & Mordechai Shechter, 2020. "Hoard or Exploit? Intergenerational Allocation of Exhaustible Natural Resources," Energies, MDPI, vol. 13(24), pages 1-20, December.
    5. John Baffes & Cristina Savescu, 2014. "Monetary conditions and metal prices," Applied Economics Letters, Taylor & Francis Journals, vol. 21(7), pages 447-452, May.
    6. Siebert, Horst, 1982. "Das intertemporale Angebot eines ressourcenabbauenden Unternehmens," Open Access Publications from Kiel Institute for the World Economy 3563, Kiel Institute for the World Economy (IfW Kiel).
    7. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    8. Eduardo Ley & Molly K. Macauley & Stephen W. Salant, "undated". "Spatially and intertemporally efficient waste management: The costs of interstate flow control," Working Papers 97-07, FEDEA.
    9. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    10. Devarajan, Shantayanan & Fisher, Anthony C, 1981. "Hotelling's "Economics of Exhaustible Resources": Fifty Years Later," Journal of Economic Literature, American Economic Association, vol. 19(1), pages 65-73, March.
    11. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    12. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    13. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    14. Seyhan, Demet & Weikard, Hans-Peter & van Ierland, Ekko, 2012. "An economic model of long-term phosphorus extraction and recycling," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 103-108.
    15. Leach, Andrew & Mason, Charles F. & Veld, Klaas van ‘t, 2011. "Co-optimization of enhanced oil recovery and carbon sequestration," Resource and Energy Economics, Elsevier, vol. 33(4), pages 893-912.
    16. Cécile Couharde & Vincent Géronimi & Armand Taranco, 2012. "Les hausses récentes des cours des matières premières traduisent-elles l'entrée dans un régime de prix plus élevés ?," Revue Tiers-Monde, Armand Colin, vol. 0(3), pages 13-34.
    17. John Boyce & Jeffrey Robert Church & Lucia Vojtassak, "undated". "Capacity Constraints in Durable Goods Monopoly: Coase and Hotelling," Working Papers 2012-07, Department of Economics, University of Calgary, revised 08 Aug 2012.
    18. Hansen, James & Gross, Isaac, 2018. "Commodity price volatility with endogenous natural resources," European Economic Review, Elsevier, vol. 101(C), pages 157-180.
    19. Mark Kagan & Frederick Ploeg & Cees Withagen, 2015. "Battle for Climate and Scarcity Rents: Beyond the Linear-Quadratic Case," Dynamic Games and Applications, Springer, vol. 5(4), pages 493-522, December.
    20. Mason, Charles F., 2014. "Uranium and nuclear power: The role of exploration information in framing public policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 49-63.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:rffdps:10778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.