IDEAS home Printed from https://ideas.repec.org/p/ags/aare16/235246.html
   My bibliography  Save this paper

Waimea Plains: economics of freshwater quantity management

Author

Listed:
  • Bermeo, Santiago
  • Doole, Graeme
  • Austin, Darran
  • Fenemor, Andrew

Abstract

The Waimea Plains (Tasman District, New Zealand) is a major horticulture area, highly reliant on irrigation. Irrigators draw water from an integrated surface water and groundwater system. Fresh water is over-allocated by 64%. Irrigators face significant restrictions due to natural fluctuations in river flow and groundwater levels, i.e. water is unreliable. This case study evaluates different options to address these problems. A catchment optimisation model is used to assess the benefits from enabling water permit transfers and from the proposed Waimea Community Dam (‘the dam’). A spreadsheet model is used to assess the impact of different ways of cutting back water permits, should the dam not go ahead. The case study is based on farm- and orchard-level models which estimate irrigation need, profit and nitrogen leaching under different levels of water allocation, reliability and soil type for apples, viticulture, market gardening and dairy farming over a period of 40 years. Key findings are that: • water permit transfers would result in moderate benefits on average (8.6% increase in average profit) but significant benefits in dry years (46% increase in profit); • the dam would result in significant benefits by enabling expansion of irrigated areas and conversion from unirrigated pasture to higher value crops, and providing a reliable water supply for existing and future irrigators (103% increase in average profit and 10% decrease in nitrogen leaching). • Should the dam not go ahead, water permit cuts based on irrigation need would result in lower, and a more even distribution of, costs than flat-rate cuts.

Suggested Citation

  • Bermeo, Santiago & Doole, Graeme & Austin, Darran & Fenemor, Andrew, 2016. "Waimea Plains: economics of freshwater quantity management," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235246, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare16:235246
    DOI: 10.22004/ag.econ.235246
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235246/files/Bermeo%20paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Graeme J. Doole & Olga Vigiak & David J. Pannell & Anna M. Roberts, 2013. "Cost-effective strategies to mitigate multiple pollutants in an agricultural catchment in North Central Victoria, Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3), pages 441-460, July.
    4. Holland, Luke M. & Doole, Graeme J., 2014. "Implications of fairness for the design of nitrate leaching policy for heterogeneous New Zealand dairy farms," Agricultural Water Management, Elsevier, vol. 132(C), pages 79-88.
    5. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    6. Kingwell, Ross S. & Pannell, David J. & Robinson, Stephen D., 1993. "Tactical responses to seasonal conditions in whole-farm planning in Western Australia," Agricultural Economics, Blackwell, vol. 8(3), pages 211-226, March.
    7. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bermeo, Santiago & Austin, Darran & Doole, Graeme & Fenemor, Andrew, 2016. "Waimea Plains: Economics of freshwater quantity management," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235247, Australian Agricultural and Resource Economics Society.
    2. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    3. Doole, Graeme J. & Marsh, Dan K., 2014. "Methodological limitations in the evaluation of policies to reduce nitrate leaching from New Zealand agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    4. Crean, Jason & Parton, Kevin & Mullen, John & Jones, Randall, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    5. Graeme J. Doole & David J. Pannell, 2011. "Evaluating environmental policies under uncertainty through application of robust nonlinear programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 469-486, October.
    6. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2016. "A Dynamic Stochastic Programming model of crop rotation choice to test the adoption of long rotation under price and production risks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 270-279.
    7. Griffith, Marnie & Codner, Gary & Weinmann, Erwin & Schreider, Sergei, 2009. "Modelling hydroclimatic uncertainty and short-run irrigator decision making: the Goulburn system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(4), pages 1-20.
    8. C. D. Pérez-Blanco & E. E. Koks & E. Calliari & J. Mysiak, 2018. "Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-38, January.
    9. Monge, Juan J. & Daigneault, Adam J. & Dowling, Leslie J. & Harrison, Duncan R. & Awatere, Shaun & Ausseil, Anne-Gaelle, 2018. "Implications of future climatic uncertainty on payments for forest ecosystem services: The case of the East Coast of New Zealand," Ecosystem Services, Elsevier, vol. 33(PB), pages 199-212.
    10. Doole, Graeme J. & Weetman, Ellen, 2009. "Tactical management of pasture fallows in Western Australian cropping systems," Agricultural Systems, Elsevier, vol. 102(1-3), pages 24-32, October.
    11. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    12. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    13. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    15. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    16. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    17. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    18. David J. Pannell, 1996. "Lessons from a Decade of Whole-Farm Modeling in Western Australia," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 18(3), pages 373-383.
    19. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    20. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.

    More about this item

    Keywords

    Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare16:235246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.