IDEAS home Printed from https://ideas.repec.org/p/ags/aaea25/362687.html
   My bibliography  Save this paper

Machine Learning Insights on Farm Exits: Enhancing Resilience in Wisconsin’s Dairy Industry

Author

Listed:
  • Uddin, Md Azhar

Abstract

Identifying farms at risk of exiting the dairy industry remains a major challenge, particularly due to data scarcity and the limitations of traditional econometric models such as logit and probit. This study applies machine learning (ML) techniques to predict dairy farm exit intentions in Wisconsin using data from the 2024 DATCP Dairy Producer Survey. Using a broad set of accessible survey based variables, including farm demographics, operations, environmental practices, and perceived challenges, we compare the performance of Lasso, Ridge, Random Forest, and Extreme Gradient Boosting (XGBoost) models. XGBoost outperforms all others in both overall accuracy and sensitivity, effectively identifying farms at risk of exit while maintaining strong performance in predicting continuation. Furthermore, SHAP (SHapley Additive exPlanations) analysis highlights succession planning, operators age, investment behavior, labor constraints, and conservation practices as key predictors. These findings demonstrate the practical utility of ML models for early risk detection and offer actionable insights for policymakers, industry stakeholders, and extension services aiming to sustain Wisconsin’s dairy sector.

Suggested Citation

  • Uddin, Md Azhar, 2025. "Machine Learning Insights on Farm Exits: Enhancing Resilience in Wisconsin’s Dairy Industry," 2025 AAEA & WAEA Joint Annual Meeting, July 27-29, 2025, Denver, CO 362687, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea25:362687
    DOI: 10.22004/ag.econ.362687
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/362687/files/Script%204_AAEA.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.362687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    3. repec:ags:aaea22:335880 is not listed on IDEAS
    4. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Ferjani, Ali & Zimmermann, Albert & Roesch, Andreas, 2015. "Determining Factors of Farm Exit in Agriculture in Switzerland," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 16(01), pages 1-14.
    7. Dong, Fengxia & Hennessy, David A. & Jensen, Helen H., 2013. "Size, Productivity and Exit Decisions in Dairy Farms," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150339, Agricultural and Applied Economics Association.
    8. Foltz, Jeremy D. & Silva, Talita, 2023. "The Determinants of Dairy Farm Exit in Wisconsin," 2023 Annual Meeting, July 23-25, Washington D.C. 335880, Agricultural and Applied Economics Association.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022. "Demand Estimation Using Managerial Responses to Automated Price Recommendations," Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
    2. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    3. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Gallego, Jorge & Rivero, Gonzalo & Martínez, Juan, 2021. "Preventing rather than punishing: An early warning model of malfeasance in public procurement," International Journal of Forecasting, Elsevier, vol. 37(1), pages 360-377.
    5. Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
    6. Brunori, Paolo & Salas-Rojo, Pedro & Verme, Paolo, 2022. "Estimating Inequality with Missing Incomes," GLO Discussion Paper Series 1138, Global Labor Organization (GLO).
    7. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    8. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    9. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    10. Khudri, Md Mohsan & Hussey, Andrew, 2024. "Breastfeeding and Child Development Outcomes across Early Childhood and Adolescence: Doubly Robust Estimation with Machine Learning," IZA Discussion Papers 17080, Institute of Labor Economics (IZA).
    11. James Habyarimana & Stuti Khemani & Thiago Scot, 2023. "The importance of political selection for bureaucratic effectiveness," Economica, London School of Economics and Political Science, vol. 90(359), pages 746-779, July.
    12. Maria Ana Matias & Rita Santos & Panos Kasteridis & Katja Grasic & Anne Mason & Nigel Rice, 2022. "Approaches to projecting future healthcare demand," Working Papers 186cherp, Centre for Health Economics, University of York.
    13. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    14. Raval, Devesh & Rosenbaum, Ted & Wilson, Nathan E., 2021. "How do machine learning algorithms perform in predicting hospital choices? evidence from changing environments," Journal of Health Economics, Elsevier, vol. 78(C).
    15. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    16. Felix Chopra & Ingar Haaland, 2023. "Conducting qualitative interviews with AI," CEBI working paper series 23-06, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    17. Uguccioni, James, 2022. "The long-run effects of parental unemployment in childhood," CLEF Working Paper Series 45, Canadian Labour Economics Forum (CLEF), University of Waterloo.
    18. Gavoille, Nicolas & Zasova, Anna, 2023. "What we pay in the shadows: Labor tax evasion, minimum wage hike and employment," Journal of Public Economics, Elsevier, vol. 228(C).
    19. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea25:362687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.