IDEAS home Printed from https://ideas.repec.org/p/ags/aaea11/103594.html

Coordinating on Reducing Advertising: Carbonated Soft Drinks Industry and Combating Obesity

Author

Listed:
  • Berning, Joshua P.
  • McCullough, Michael

Abstract

With the rise in obesity levels across the nation, policy makers and public interest groups are taking more interest in advertising of unhealthful foods. The Better Business Bureau has formed the Children’s Food and Beverage Advertising Initiative (CFBAI), which has recruited carbonated soft drink (CSD) manufactures to voluntarily restrict their advertising directed at children less than 12 years of age. This research explores the effects of the CFBAI on firm level advertising to children and adults using nonlinear time series processes. Estimated ARCH processes are significant in all models and capture varying pulse-advertising strategies by all major firms. We find that the market leader does in fact reduce its advertising to both adults and children and the second largest firm reduces advertising to adults. Advertising for the non-participating firm, however, increased for adults following the ban. The results emphasize the potential benefits and difficulty of coordinating cooperative behavior in this type of industry. It appears that policy strategies of this nature may be more effective if directed at industries as a whole and not at individual firms.

Suggested Citation

  • Berning, Joshua P. & McCullough, Michael, 2011. "Coordinating on Reducing Advertising: Carbonated Soft Drinks Industry and Combating Obesity," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103594, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea11:103594
    DOI: 10.22004/ag.econ.103594
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/103594/files/CSD-adv-AAEA.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.103594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Ratz, 2022. "Nonparametric Value-at-Risk via Sieve Estimation," Papers 2205.07101, arXiv.org.
    2. Rehim Kılıç, 2025. "Linear and nonlinear econometric models against machine learning models: realized volatility prediction," Finance and Economics Discussion Series 2025-061, Board of Governors of the Federal Reserve System (U.S.).
    3. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    4. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    6. Mário Jorge Mendonça & Cláudio H. dos Santos, 2008. "Revisitando a Função de Reação Fiscal no Brasil Pós-Real: Uma Abordagem de Mudanças de Regime," Discussion Papers 1337, Instituto de Pesquisa Econômica Aplicada - IPEA.
    7. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    8. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2014. "Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 510-535, August.
    9. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    10. Ryan Lemand, 2003. "The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach," Econometrics 0307002, University Library of Munich, Germany, revised 07 Dec 2020.
    11. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    12. Chelley-Steeley, Patricia & Lambertides, Neophytos & Savva, Christos S., 2013. "Illiquidity shocks and the comovement between stocks: New evidence using smooth transition," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 1-15.
    13. Alessandro Cardinali, 2012. "An Out-of-sample Analysis of Mean-Variance Portfolios with Orthogonal GARCH Factors," International Econometric Review (IER), Econometric Research Association, vol. 4(1), pages 1-16, April.
    14. François-Éric Racicot & Raymond Théoret, 2022. "Tracking market and non-traditional sources of risks in procyclical and countercyclical hedge fund strategies under extreme scenarios: a nonlinear VAR approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    15. Kinnunen, Jyri, 2014. "Risk-return trade-off and serial correlation: Do volume and volatility matter?," Journal of Financial Markets, Elsevier, vol. 20(C), pages 1-19.
    16. Damette, Olivier, 2016. "Mixture Distribution Hypothesis And The Impact Of A Tobin Tax On Exchange Rate Volatility: A Reassessment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(6), pages 1600-1622, September.
    17. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    18. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    19. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    20. Lo, Ming Chien & Morley, James, 2015. "Bayesian analysis of nonlinear exchange rate dynamics and the purchasing power parity persistence puzzle," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 285-302.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea11:103594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.