IDEAS home Printed from https://ideas.repec.org/f/pda748.html
   My authors  Follow this author

Sophie Dabo-Niang

Personal Details

First Name:Sophie
Middle Name:
Last Name:Dabo-Niang
Suffix:
RePEc Short-ID:pda748
[This author has chosen not to make the email address public]
http://perso.univ-lille3.fr/sdabo/

Affiliation

(50%) Lille Économie et Management (LEM)

Lille, France
http://lem.univ-lille.fr/
RePEc:edi:laborfr (more details at EDIRC)

(50%) Institut des Sciences Économiques et du Management
Faculté des sciences économiques, sociales et des territoires
Université de Lille

Lille, France
https://ses.univ-lille.fr/faculte/instituts/institut-des-sciences-economiques-et-management
RePEc:edi:umli3fr (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.
  2. Dabo-Niang, Sophie & Francq, Christian & Zakoian, Jean-Michel, 2009. "Combining parametric and nonparametric approaches for more efficient time series prediction," MPRA Paper 16893, University Library of Munich, Germany.
  3. Sophie Dabo-Niang, 2001. "Density Estimation in Infinite Dimensional Space : Application to Processes of Diffusion Type," Working Papers 2001-05, Center for Research in Economics and Statistics.

Articles

  1. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.
  2. André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
  3. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
  4. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
  5. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
  6. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
  7. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.
  8. Sophie Dabo-Niang & Ali Laksaci, 2010. "Note on conditional mode estimation for functional dependent data," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 83-94.
  9. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
  10. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
  11. Dabo-Niang, Sophie & Thiam, Baba, 2010. "Robust quantile estimation and prediction for spatial processes," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1447-1458, September.
  12. Dabo-Niang, Sophie & Guillas, Serge, 2010. "Functional semiparametric partially linear model with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 307-315, February.
  13. Dabo-Niang, Sophie & Ferraty, Frederic & Vieu, Philippe, 2007. "On the using of modal curves for radar waveforms classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4878-4890, June.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.

    Cited by:

    1. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    2. Ardelean, Vlad & Pleier, Thomas, 2013. "Outliers & predicting time series: A comparative study," FAU Discussion Papers in Economics 05/2013, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

Articles

  1. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.

    Cited by:

    1. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

  2. André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.

    Cited by:

    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    4. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    5. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    6. Bastos, Bruno Quaresma & Cyrino Oliveira, Fernando Luiz & Milidiú, Ruy Luiz, 2021. "U-Convolutional model for spatio-temporal wind speed forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 949-970.
    7. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    8. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    9. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.

  3. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.

    Cited by:

    1. Somia Ayad & Ali Laksaci & Saâdia Rahmani & Rachida Rouane, 2020. "On the local linear modelization of the conditional density for functional and ergodic data," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 237-254, August.
    2. Amel, Azzi & Ali, Laksaci & Elias, Ould Saïd, 2022. "On the robustification of the kernel estimator of the functional modal regression," Statistics & Probability Letters, Elsevier, vol. 181(C).

  4. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.

    Cited by:

    1. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    2. Dabo-Niang, Sophie & Thiam, Baba, 2010. "Robust quantile estimation and prediction for spatial processes," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1447-1458, September.
    3. Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.

  5. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.

    Cited by:

    1. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    2. Amandine Ghintran & Enrique Gonzalez-Aranguena & Conrado Manuel, 2011. "A probabilistic position value," Working Papers hal-00988137, HAL.
    3. Krebs, Johannes T.N., 2018. "Nonparametric density estimation for spatial data with wavelets," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 300-319.
    4. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    5. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

  6. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.

    Cited by:

    1. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    2. Oussama Bouanani & Saâdia Rahmani & Ali Laksaci & Mustapha Rachdi, 2020. "Asymptotic normality of conditional mode estimation for functional dependent data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 465-481, June.
    3. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.

  7. Sophie Dabo-Niang & Ali Laksaci, 2010. "Note on conditional mode estimation for functional dependent data," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 83-94.

    Cited by:

    1. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    2. Somia Ayad & Ali Laksaci & Saâdia Rahmani & Rachida Rouane, 2020. "On the local linear modelization of the conditional density for functional and ergodic data," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 237-254, August.
    3. Oussama Bouanani & Saâdia Rahmani & Ali Laksaci & Mustapha Rachdi, 2020. "Asymptotic normality of conditional mode estimation for functional dependent data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 465-481, June.
    4. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    5. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.

  8. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.

    Cited by:

    1. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.

  9. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    See citations under working paper version above.
  10. Dabo-Niang, Sophie & Thiam, Baba, 2010. "Robust quantile estimation and prediction for spatial processes," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1447-1458, September.

    Cited by:

    1. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    2. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    3. Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.

  11. Dabo-Niang, Sophie & Guillas, Serge, 2010. "Functional semiparametric partially linear model with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 307-315, February.

    Cited by:

    1. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    2. Guochang Wang & Xiang-Nan Feng & Min Chen, 2016. "Functional Partial Linear Single-index Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 261-274, March.
    3. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    4. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    5. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.

  12. Dabo-Niang, Sophie & Ferraty, Frederic & Vieu, Philippe, 2007. "On the using of modal curves for radar waveforms classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4878-4890, June.

    Cited by:

    1. Alonso Fernández, Andrés Modesto & Casado, David & Romo, Juan, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
    3. Bongiorno, Enea G. & Goia, Aldo, 2016. "Classification methods for Hilbert data based on surrogate density," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 204-222.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2009-08-30
  2. NEP-ETS: Econometric Time Series (1) 2009-08-30
  3. NEP-MIC: Microeconomics (1) 2009-08-30

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Sophie Dabo-Niang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.